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Abstract. World demand for livestock products is likely to increase in coming decades but the cost of production
could escalate faster than the price due to competition for land, water, grain and fertiliser and the effects of climate change
and its mitigation. To remain competitive for these resources, livestock agriculture has to dramatically increase in efficiency
of production. Genetic gain is one mechanism to achieve increased efficiency and there is the opportunity to utilise the
scientific advances in genomics. Three ways in which genomics can be used are in additive genetic improvement,
exploitation of non-additive genetic variance and management which exploits genotype by environment interactions to
optimise management. Genomic selection is already being widely implemented in dairy cattle and beef cattle and sheep
will follow in the future once the accuracy of genomic selection is high enough. The accuracy of equations that predict
breeding value from DNA genotypes can be increased by increasing the size of the reference population from which the
equations are estimated, increasing the density of markers, using genome sequences instead of markers, using more
appropriate statistical procedures and incorporating biological information into the prediction. In the long term, genomic
selection combined with reproductive technology that reduces the minimum age at breeding will greatly increase the
rate of genetic gain. This will allow long-term increases in biological efficiency and short-term tailoring of livestock to
meet the demands of particular markets and opportunities.
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Opportunity and challenges

Livestock agriculture faces great opportunities and challenges
in the coming decades. As the world population increases to
9 billion by 2050 (FAO Commission on Genetic Resources for
Food and Agriculture 2007) and as the incomes of many in
developing countries increase, the demand for meat and dairy
products will also increase (Delgado et al. 1999). However, there
will also be increased competition for land, water, fertiliser
and grain which will increase the cost of livestock production.
Climate change will exacerbate these cost increases in three
ways. First, it will increase the shortages of water, fertiliser
and grain in parts of the world. Second, climate change will
directly affect livestock in some places due to greater heat stress
and tropical diseases (Hughes 2003). Third, it may lead to a
charge for methane emission.

Livestock production could compete for scarce resources
if the price of livestock products increased in line with input
costs but this may not happen because consumers have
alternatives to meat and dairy products and these will improve
with time as food manufacturing technology improves.

Therefore livestock agriculture needs to increase in efficiency
over the coming decades. There have been increases in
productivity in the past, but these have been much faster in
intensive industries such as poultry than in extensive ruminant
production where they have just managed to maintain livestock

agriculture as a competitive investment. The need for these
gains will continue but will be increased by the competition
for inputs discussed above, so we need much faster productivity
gain in the future than in the past.

Genetic change in livestock is one source of gain in efficiency.
The genomic revolution sweeping genetics and biology is
providing new knowledge and new tools that can be applied
to livestock production. For instance, the cost of genome
sequencing has dropped to 1 millionth.

In the present paper, I will consider how genomics can be
used to achieve faster genetic improvement in the dairy, beef
and sheep industries. I will consider three types of genetic
change – additive genetic improvement, exploitation of non-
additive genetic variation and genotype by environment
interaction (G · E).

Additive genetic improvement

Most traits of economic importance are quantitative or complex
traits controlled by many genes and by environmental effects.
Traditional improvement of these traits has relied on using
phenotypic data and pedigrees to estimate the combined effect
of all genes on the additive genetic value or breeding value of
each animal. However, genetic variation is due to variation in the
DNA sequence, so it would seem logical to select animals
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carrying the most favourable alleles at all sites affecting
profitability. This has been implemented at a small number of
sites where mutations cause a large effect, such as those causing
genetic abnormalities. Unfortunately, most of the polymorphic
sites in the DNA that control economic traits are unknown. An
alternative to selection on the causal sites is to use genetic
markers linked to these causal sites. Such marker-assisted
selection was relatively unsuccessful until the development of
assays that could genotype thousands of single-nucleotide
polymorphisms (SNPs) covering the entire genome. This made
it possible to implement ‘genomic selection’ (Meuwissen et al.
2001) which is the use of a large panel of dense, genome-wide
markers to predict the breeding value. Genomic selection relies
on linkage disequilibrium (LD) between markers and causal
polymorphisms which cause associations between markers
and the traits that these causal polymorphisms affect. It is a
statistical method that does not require identification of the
genes or sites causing variation in the trait. It has been most
successful in dairy cattle where the accuracy of predicting the
breeding value from SNP genotypes is 0.7 in some cases
(VanRaden et al. 2009).

The advantage of marker-assisted selection, including
genomic selection, over traditional methods is greatest where
traditional methods are difficult to implement (Meuwissen and
Goddard 1996). This usually occurs because the phenotype of
interest cannot be observed on selection candidates at the
age when they can first be used for mating. For instance, milk
production cannot be observed in bulls, meat tenderness cannot
bemeasured on the live animal and adult wool production cannot
be observed in yearling sheep. This limitation of traditional
selection is more widespread than sometimes acknowledged.
For instance, feed conversion efficiency is a major economic
objective but it is seldommeasured.Also, commercial production
may take place in crossbred animals or in an environment
different from that in which stud animals are selected.

The accuracy of genomic selection is not currently as high as
that of a progeny test in most cases. The steps needed to raise the
accuracy are described in Goddard et al. (2010) and summarised
below.

The size of the reference population, that is the number of
animals with phenotypes and genotypes from which the
prediction equation is estimated, is critical (Goddard 2009).
VanRaden et al. (2009) showed how accuracy increases with
the size of the reference population. The effect of the reference
population size interacts with the accuracy of the phenotype as
a predictor of the breeding value. If the phenotype is a
single measurement of the trait on the animal, this accuracy
is the square root of the heritability. If the ‘phenotype’ is the
average phenotype of a bull’s daughters, then the accuracy is
the correlation between the daughter average and the true
breeding value of the bull. The accuracy of the prediction
equations depends on Th2, where T = number of animals
in the reference population and h = accuracy of phenotype. At
low levels of accuracy, accuracy squared is almost proportional to
Th2, but as accuracy increases, it reaches a plateau at 1.0 or less.
Therefore, a bigger reference population is needed for individual
measurements than for progeny test ‘phenotypes’ and a bigger
population still is needed if the individual measurements are
for a lowly heritable trait.

The value of Th2 that is needed depends on the amount of
LD in the population. Using the r2 measure of LD, let Me = 1/
(average value of r2 over all pairs of markers). Then the
accuracy of genomic selection depends on Th2/Me (Goddard
2009). Thus, if LD is widespread, many pairs of markers
show high values of r2 and so Me is low and Th2/Me is high,
leading to high accuracy of genomic selection. Me depends on
the effective population size (Ne) because a small Ne leads to
high LD.

In most breeds of livestock, recent Ne is small (100–200)
and this causes widespread LD and helps genomic selection to
work. By contrast, recent Ne in human populations is very large
and it is difficult to predict even highly heritable traits such as
height, with any accuracy from SNP genotypes (Lango Allen
et al. 2010). However, if the population consists of a mixture of
breeds, LD may be reduced. If the phase of LD varies among
breeds, this means that the correlation (r) between a pair of
markers may be positive in some breeds and negative in
others, and so the average r over the breeds will be small and,
therefore, r2will be small.Mixing breeds also generates someLD
due to differences in allele frequency among breeds. But this
source of LD is used to some extent in traditional genetic
evaluation by fitting breed in the statistical model and so
cannot be counted as an advantage of genomic selection unless
the breed composition of animals in the population is unknown.
LD phase varies among breeds of Bos taurus cattle unless
the markers are very close together, say less than 10 kb apart
(de Roos et al. 2008, 2009). Therefore, average r2 declines
towards zero as more breeds are added if the markers are
50 kb apart, but declines to a low but non-zero value if
markers are 5 kb apart. This implies a large value of Me, and
hence a high value of Th2 is needed for highly accurate genomic
selection in a mixed-breed population.

The accuracy of genomic selection is higher in dairy cattle
than in beef cattle and sheep (see papers Hayes et al. (2010) in
these proceedings). This is not surprising, because in dairy cattle
the size of the reference population (T) is larger than in beef
and sheep, the phenotype is a daughter average and so h2 is
higher than in beef where individual phenotypes are frequently
used, LD is high in some dairy breeds with small effective
population size and prediction equations are based on data
from one breed (e.g. Holstein) rather than a mixture of breeds,
as is common in beef and sheep.

The accuracy of genomic selection also depends on the
density of markers. The markers must be dense enough so that
all QTL are in high LD with one or more markers. If this is not
the case, some of the genetic variance due to QTL will not be
detected by the markers. If the QTL have properties similar to the
markers, then the proportion of genetic variance explained by
the markers is M/(M + Me), where M is the number of markers
(Goddard et al. 2011). If the QTL are unlike themarkers, then the
markers may not detect all the genetic variance, no matter how
many markers are used. For instance, if the QTL have one rare
allele they will not be in complete LD with any marker that has
no equally rare allele. In humans, markers trace only 60% of
the genetic variance for height (Yang et al. 2010). Use of
haplotype information might overcome this problem, but has
other disadvantages such as increasing the number of effects
that must be estimated.
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An alternative to genetic markers is to use the full genome
sequence of each animal for the prediction of the breeding
value. This is becoming possible due to the dramatic drop in
the cost of genome sequencing and the ability to impute sequence
from marker genotypes once a large reference panel of animals
with full sequence exists for each species. Full sequence data
provide the equivalent of very dense markers, and more
importantly, they should include the causal polymorphisms.
Meuwissen and Goddard (2010) showed that this led to a
higher accuracy in predicting the breeding value than did
marker panels.

The statistical method used to estimate breeding values from
marker data affects the accuracy of the prediction. The best
method to use depends on the genetic architecture of the trait
(Hayes et al. 2010). For instance, if there are a huge number of
QTL, each with a very small effect, then the method called
BLUP is the best method. However, if only some markers are
needed or if some have a larger effect, Bayesianmethods perform
better than BLUP. To get an advantage from genome-sequence
data, it is probably necessary to use one of the Bayesian methods
because, in sequence data, very few of the polymorphisms are
expected to have an effect on the phenotype (Meuwissen and
Goddard 2010).

Some of the Bayesian statistical methods, referred to in the
previous paragraph, assume that only some of the markers or
polymorphic sites in the sequence have an effect on the trait.
That is, they can be described as a model selection process in
which the analysis is identifying which markers have an effect
and which markers have no effect. In full sequence data, the sites
with an effect should be causal polymorphisms or other sites in
complete LD with the causal site. The causal sites have a
biological effect on the trait. They should be in a gene whose
product affects the trait and they should be a site within the gene
that affects either the structure of the gene product or its
regulation. Among the 180 markers known to be associated
with human height, some are close to genes with a known role
in skeletal growth and some are in LD with a site that is known
to affect the expression of the gene (Lango Allen et al. 2010).
Therefore, the discoveries of associations between markers
and traits can lead to new biological knowledge but we should
also be able to use biological knowledge to improve the
selection of sites to include in the equation to predict the
breeding value. This approach should increase in power
when we use genome sequence data combined with Bayesian
statistical methods.

Simulation studies predict that the response to genomic
selection will rapidly decline unless prediction equations are
updated each generation (Muir 2007). This occurs because
selection fixes the marker but not the QTL due to incomplete LD
and because recombination erodes the LD (Goddard 2009).
The problem is exacerbated if the prediction equation does
not track QTL with rare favourable alleles that contribute
disproportionately to the long-term selection response (Goddard
2009). However, these results may be too pessimistic because
the very large number of QTL affecting most traits means that
the changes in allele frequency will be slow and selection
response will decline more slowly than predicted.

To maximise the long-term selection response, it will be
important that genomic selection increases the frequency of

rare favourable alleles. Traditional selection on phenotype
does this automatically if inefficiently. Therefore, it may be
desirable to include some selection on phenotype into a
genomic selection program. This happens automatically when
phenotypes are recorded on selection candidates and used in the
calculation of the estimated breeding value (EBV). In addition,
it would help if the prediction equation was estimated using
phenotypes from selection candidates; that is, to have the stud
animals form part of the reference population.

To maximise the benefit from genomic selection, it is often
necessary to change the design of the breeding program. For
instance, in dairy cattle one must drastically reduce generation
length by selecting yearling bulls and heifers as sires and dams
of the next generation. In traditional selection, phenotypes have
to be recorded on selection candidates or their near relatives.
This is not the casewith genomic selection. It is possible to collect
phenotypes and genotypes on commercial animals of unknown
parentage, estimate prediction equations from this data and use
them to select among a group of stud animalswith no phenotypes.
This design is advantageous because it allows phenotypes such
as tenderness to be collected that are difficult to collect on stud
animals. However, it has not been shown that this approach will
work in practice and it conflicts with the suggestion made in the
previous paragraph that phenotypes should be collected on stud
animals. More research is required to find the best designs of
breeding programs for genomic selection. However, it seems
likely that the best designswill be very different from the industry
structures of today.

Non-additive genetic variation

The value of commercial animals is determined by their
phenotype, which depends on environmental effects and total
genetic value. The difference between genetic value and breeding
value is due to non-additive effects such as dominance and
epistasis. The most common uses of non-additive effects are
by exploiting heterosis and by the minimisation of inbreeding.

Inbreeding can be minimised in the short term by avoiding
mating relatives based on knowledge of their pedigree.
Homozygosity can be further reduced by knowledge of the
marker genotypes; mates are chosen so as to minimise the
homozygosity of the offspring (Pryce et al. 2012). This
requires that both sires and dams have been genotyped and so
genotyping needs to be inexpensive for this to be a profitable
strategy in commercial sheep and cattle.

One aspect of inbreeding depression is increased incidence
of homozygotes for recessive genetic abnormalities and lethals.
The incidence of homozygous-affected offspring can be
decreased in the same way as other inbreeding depression by
avoiding mating sires and dams that are both carriers of the same
abnormality. Note that culling carriers also decreases the
incidence of affected young but this is an example of selection
on breeding value and has the disadvantage that it competes
with other criteria for culling.

Heterosis is greater, the more distantly related the breeds
to be crossed are. Often the amount of heterosis in different
crosses is already known from experiments, but if this is not
the case, it could be predicted by estimating the relatedness of
breeds on the basis of genetic markers (Goddard and Ahmed
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1982). That is, breeds that are least closely related show the most
heterosis when crossed.

If a crossbreeding program is already in place, the aim of
selection within the parent lines should be to improve the
crossbred offspring. Traditionally, this is carried out by
reciprocal recurrent selection but this requires progeny testing
and hence increases generation length. Markers could be used to
predict the value of a parent’s crossbred offspring by using a
crossbred reference population. This should cause the heterosis
in the cross to steadily increase.

If the value of different epistatic gene combinations were
known (Carlborg and Haley 2004), this information could be
used in mate allocation in the same way as described above for
avoidance of inbreeding and recessive abnormalities.

Some genes show imprinting in which only the paternal or
the maternal allele is expressed. This could be exploited by
having separate sire and dam lines. For a gene that is only
expressed when inherited from the sire, one would select for
the desirable allele in the sire line but ignore this gene in the dam
line.

Inmeat sheep, a structured, terminal crossbreeding program is
common, but this is not the case in cattle. Given the new
opportunity to select for crossbred performance, perhaps it is
time to reconsider crossbreeding in dairy and beef. Alternatively,
by forming a synthetic or composite breed, it might be possible
to use genomic selection especially successfully to increase
additive genetic merit.

Genotype by environment interaction (G · E)

If the breeding program is producing animals for a single
environment or market, then the objective should be to
improve breeding value for that objective. The G · E is
important only if information is coming from outside the target
environment. For instance, milk production inUSA is a different,
although correlated, trait to milk production in Australia.
Consequently, phenotypic information from USA predicts the
breeding value in Australia less accurately than the same
phenotypic data from Australia. This inaccuracy caused by the
G ·E can be overcome by using genomic selection. For instance,
a bull in the USA can have DNA collected and genotyped and
used in the equation to predict the breeding value in Australia. Its
EBVwill then be as accurate as that of a bull inAustraliawith only
DNA data. (This assumes that the LD between SNPs and causal
polymorphisms in American Holsteins is the same as in
Australian Holsteins, which is likely to be the case.) This
should increase the internationalisation of breeding programs
because an animal does not need close relatives, such as
daughters, in every environment in which it might be selected
for breeding.

Breeding programs often produce animals for more than
one environment or market. For instance, cattle from the same
breeding programmight be sold for a domestic market and for an
export market with different requirements. In this case, there are
two alternative strategies. First, the breeding program can be split
into parts that concentrate on only some of the environments or
markets. Alternatively, animals bred by the single breeding
program can be allocated to the environment or market in
which they will be most profitable. For instance, a Charolais

cattle breeder might sell bulls to beef producers in both southern
and northern Australia and allocate bulls according to where they
will be most profitable. Genomic selection is useful for this
purpose because it is possible to evaluate the breeding value of
a bull for performance in an environment other than that in which
he has been raised.

This process of allocating animals to the most profitable
environment or market could also be applied to commercial
animals such as feedlot steers. For instance, the optimum
number of days on feed could be decided for each individual
steer. In this case, it is the future phenotypic value of the animal
that is relevant, not its breeding value. The most accurate
prediction of the future phenotype might utilise prediction of
the breeding value, non-additive genetic value and environmental
effects, for instance, by utilising the current phenotype as a
predictor. Although there are benefits from allocating
commercial animals to their most profitable environment, the
benefit is limited to one animal and is not multiplied over many
descendants and, consequently, the cost of deciding on the best
environment must be small. However, provided the cost can be
reduced, we could see a form of precision agriculture or
personalised medicine applied to livestock in which each
animal receives optimised treatment.

Breeding program design

When only phenotypic information is used to estimate the
breeding value of an animal, the accuracy of this EBV
increases as the animal ages. At first, the animal may have no
phenotypic information of its own, but gradually the number of
traits that can be measured increases and, eventually, this is
supplemented by phenotypic information on progeny.
Consequently, there is a trade-off in the design of the breeding
program between accuracy of selection and generation length.
However, DNA can be obtained at birth or even before and
used in genomic selection to predict the breeding value. This
prediction will not change as the animal ages, unless the
prediction equation changes. Therefore, the optimum age for
selection will usually be lower with genomic selection than with
traditional phenotypic selection. For instance, dairy-cattle
breeding programs are changing from using progeny-tested
bulls to using yearling bulls.

Although it may be possible to make selection decisions
at birth, it is not possible to obtain offspring from animals
until a later age. Thus, technology that reduces the minimum
age for breeding acts synergistically with genomic selection to
increase the rate of genetic gain by decreasing the generation
interval.

Under genomic selection, there is still a strong need for a
database of animals with phenotypic measurements and
genotypes from which to estimate prediction equations.
However, there is less need than previously to measure
phenotypes on selection candidates. This fact, combined with
the additional value now possible from reproductive technology,
could potentially change the design of breeding programs and
even the industry structure that currently supports genetic
improvement. It is not possible to predict what changes will
occur, but over the next 20 years, I expect that there will be big
changes in the genetic-improvement industry.
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Conclusions

There is a strong need to increase the biological efficiency of
livestock production to meet the rising costs of inputs expected
in the future. Long-term genetic improvement, using genomics
and reproductive technology, could achieve part of the increased
efficiency needed. The increasing demand for milk and meat
will come from non-traditional markets in developing
countries and it is difficult to anticipate the exact requirements
of this trade, other than low cost. Therefore, wewill needmethods
to respond relatively quickly to take advantage of markets with
specific requirements. Shorter-term genetic improvement,
together with breed selection, mating plans and individual
management, could generate cattle and sheep suited to these
market opportunities.
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