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Abstract. Mathematical equations have been used to add quantitative rigour to the description of animal systems for the
last 100 years. Initially, simple equations were used to describe the growth of animals or their parts and to predict nutrient
requirements for different livestock species. The advent of computers led to development of complex multi-equation,
dynamic models of animal metabolism and of the interaction between animals and their environment. An understanding
was developedabout howanimal systems could be integrated inmodels to obtain themost realistic predictionof observations
and allow accurate predictions of as yet unobserved events. Animal models have been used to illustrate how well animal
systems are understood and to identify areas requiring further research. Many animal models have been developed with the
aim of evaluating alternative management strategies within animal enterprises. Several important gaps in current animal
models requiring further development are identified: including a more mechanistic representation of the control of feed
intake; inclusion of methyl-donor requirements and simulation of the methionine cycle; plus a more mechanistic
representation of disease and the impact of microbial loads under production environments. Reasons are identified why
few animal models have been used for day-to-day decision making on farm. In the future, animal simulation models are
envisaged to function as real-time control of systems within animal enterprises to optimise animal productivity, carcass
quality, health, welfare and to maximise profit. Further development will be required for the integration of models that run
real time in enterprise management systems adopting precision livestock farming technologies.
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Introduction

The use of mathematical equations to describe components of
animal systems has a long history extending over 100 years
(Dumas et al. 2008). In 1914, Wood and Yule reflected on
predicting the amount of fat, work or milk that could be produced
from an animal supplied with a diet containing a known mount
of starch equivalents (Wood and Yule 1914). The purpose for
developing equations to describe such processes is to add
quantitative rigour to the assessment of the likely outcomes
from an event based on evaluation of existing knowledge. The
process, frequently called ‘simulation modelling’, can involve
one equation or the integration of many equations.

The first equations used to predict components of animal
systems from the 1920s to the 1960s were ‘static’ models that
represented the state of the system for only one instance in time
(Brody and Ragsdale 1921; Huxley 1924; Blaxter 1962). These
first models were used to describe the growth of animals or
animal parts (Huxley and Teissier 1936) and to predict the
energy and nutrient requirements for many domestic livestock
species at specific liveweights (FAO/WHO 1957, 1965; ARC
1965). However, with the advent and increasing use of
computers during the late 1960s and 1970s, the number of
equations included in models grew substantially. The models
became ‘dynamic’, where time was described explicitly and

outcomes were predicted over varying periods of time using
varying iteration intervals (Whittemore and Fawcett 1974;
Graham et al. 1976). Many of the earlier animal simulation
models were based largely on regression equations that
described associations between two or more variables and which
implied little about the underlying mechanisms controlling
operation of the system. Predictions from these models were
frequently poor when applied to situations outside the range
from which the original data were collected (Black 1995).

The realisation that regression equations were unsuitable
for most models, stimulated development of ‘mechanistic’
models based on either the laws of physics and chemistry or
on equations with known characteristics derived specifically to
represent the perceived mechanisms of a system (Black 1995).
The latter equations are known as ‘conceptual’ or ‘deductive’
equations and examples are given by Baldwin and Black (1979)
and Thornley (2008) to predict sigmoidal growth curves for
animal organs or whole animals. Mechanistic models have
been used to describe a range of animal systems, including:
nutrient metabolism and energy transactions in individual
organs or whole animals using biochemical pathways based on
Michaelis–Menten kinetics (Garfinkel 1966; Baldwin and
Smith 1971); assessing the effects of skin blood flow rate,
wool follicle numbers, absorption of sulfur containing amino
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acids and pregnancy on the rate of wool growth, wool
protein composition, wool follicle cell turnover rate and
uptake of sulfur-containing amino acids by other tissues
(Black and Reis 1979); wool follicle initiation and
development based on the reaction–diffusion theory (Nagorcka
and Mooney 1989); and the impact of the climate on animals
through the physics of heat exchange between the animal and its
environment (Bruce and Clark 1979).

The most important characteristic of effective mechanistic
models is that they can predict the outcome of an event before it
has been observed. This principle is well demonstrated by the
reaction diffusion model of Nagorcka and Mooney (1989) for
wool follicle initiation (Black 1995). The model predicted that
the number of wool follicles initiated at a specific phase of fetal
development would be a function of skin surface area. Adelson
(1991) tested the hypothesis by placing either a 2 cm teflon
hemisphere or a 2 cm flat disc on opposite sides of a 71 day
old fetus after the primary follicles had been initiated but before
the secondary follicles were formed. The hemisphere : disc
surface area was 2 : 1 and the model predicted that the ratio of
secondary : primary follicles would be twice as great for the
skin over the hemisphere than over the disc. The experiment
showed the secondary : primary follicle ratio to be 2.76 for the
hemisphere and 1.33 for the disc, confirming the prediction.

There has been continuing development of animal models
over the last 30 years (Dumas et al. 2008), with most being a
combination of physical-chemical theory representations and
conceptual equations. Nevertheless, a question remains about
the value of animal models to science and to practical
agriculture. This paper considers reasons for developing
animal simulation models, highlights several areas where
further development of concepts would be valuable for their
application and suggests ways that could improve their use in
practical agriculture.

Reasons for developing animal models

The philosophy behind development of computer models to
simulate animal systems has been described previously by many
authors including Baldwin and Koong (1980) and France and
Dijkstra (2000). The two primary reasons for developing
mathematical models are (1) to demonstrate, quantitatively, how
well a system is understood and then direct future research
towards improving that understanding; and (2) to integrate
disparate pieces of current knowledge to assist decision making
either for prioritising research activities or for direct application
by enterprise managers. The former represents a formalisation
of the process used by all research scientists whereby ideas
and concepts about the operation and control of a system are
developed using data obtained from experiments. This
procedure leads to the development of hypotheses, the conduct
of new experiments and acquisition of more knowledge that
allows a deeper understanding of the system. Modelling simply
adds rigour by forcing each step in the process to be described
quantitatively in terms of mathematical equations and not
subjectively. Hypotheses about the operation of a system can be
more readily evaluated using mathematical models than with
traditional subjective approaches. Inputs or components of the
modelled system representing concepts of the mechanisms

can be readily changed to test hypotheses and examine the
closeness of predictions to experimental observations. Thus,
hypotheses can be more thoroughly refined before costly
experiments are conducted to improve understanding of the
system.

The other major advantage of modelling is that many small
systems can be integrated into larger systems. Frequently, the
complexity of the interactions in these larger systems is so
great that it is impossible for the human mind to follow the
consequences of changes to the system over time. For example,
the effects of a period of cold weather and differences in stocking
density on the growth rate and final body composition of pigs
can be predicted by simulation models, but cannot be reasonably
deduced because of the interaction between the many factors
over time (Black et al. 1993).

In the 1970s and 1980s, the capacity to integrate numerous
systems into one model led to the concept that fundamental
biological knowledge, when incorporated into simulation
models, could be used to assist decision making on farms.
Models could integrate numerous parts of an animal system
and, combined with a representation of an enterprise structure,
they could predict outcomes of productivity over long periods of
time. These predictions could be used to help managers make
decisions about themost profitable strategies to adopt. Numerous
models with this intention were developed, including those for
pigs (Whittemore 1983; Black et al. 1986; Moughan et al. 1987;
de Lange et al. 2001; vanMilgen et al. 2008), for sheep (Graham
et al. 1976), for beef and dairy cattle (Oltjen et al. 1986; Baldwin
et al. 1987a, 1987b, 1987c; Nagorcka and Zurcher 2002) and for
poultry (Emmans 1981; Emmans and Fisher 1986; Emmans
1989; Johnston and Gous 2006).

Most models designed for practical application have a similar
structure (Oltjen et al. 1986;Emmans andOldham1988;Baldwin
1995; Black and de Lange 1995; Ferguson 2006; van Milgen
et al. 2008). The animal component of the models commences
with a description of the animal, including: an estimate of its
genetic potential to deposit protein and energy (or fat); a
description of the diet; of the social and climatic environment;
and of health status. Feed intake is predicted either from simple
algorithms or a complex set of equations (Poppi 2008; Black
2009). Ingested feed is then digested, again using either simple
algorithms (Graham et al. 1976) or complex models of digestion,
particularly for ruminants (Black et al. 1981; Dijkstra et al.
1992; Baldwin 1995; Nagorcka et al. 2000) and also for pigs
(Bastianelli and Sauvant 1998; Rivest et al. 2000). Individual
nutrients available for metabolism are predicted. Most models
estimate the energy and individual amino acids needed for
maintaining the integrity of the animal in relation to its current
physiological state and the impact of the social, climatic and
disease environment. Several models simulate the requirements
for macrominerals (Kebreab et al. 2008). Various procedures,
including Michaelis–Menten kinetics and simpler algorithms,
are then used to partition available nutrients between
competing body functions. The net outcomes from considering
these metabolic processes are predictions of accumulation rates
of protein, fat, specific minerals, total animal weight, carcass
weight, wool growth rates, milk yield, excretion of nitrogen,
methane and minerals, efficiency of feed use and other variables.
Some models predict the order of limiting amino acids and
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the amount required to overcome any deficiency. Similarly,
deficiencies in macromineral supply and effects on bone
strength are also predicted by some models (Black 2009). The
majority of current animal models are deterministic and
predict the outcome for one animal that represents the mean of
a group of similar animals, rather than being stochastic where a
range of possible outcomes representing natural variability is
predicted. Nevertheless, stochastic elements have been added
to several deterministic models by (1) undertaking multiple
simulations within one ‘run’ of the model where input
variables under either genetic control, such as capacity to
deposit fat and protein, or environmental control are varied
for each simulation to accommodate all animals within a group
(Knap 1995; Baudracco et al. 2013), and (2) using normal curve
and statistical variance assumptions for economically important
variables such as carcass weight and back fat thickness in pigs to
predict their likely frequency and range for determining
prices paid for all animals in a group (Black et al. 1993).
Stochastic modelling of individual animals has been used in
broiler models as a means for determining optimum economic
amino acid concentrations in diets (Gous and Berhe 2006),
for assessing animal movement within areas (Preisler et al.
2004; Smouse et al. 2010) and for predicting the spread of
diseases through animal populations (Rorres et al. 2011;
Stevenson et al. 2013). Models have been used to predict the
spread of contagious diseases such as spongiform
encephalopathy (Thornley and France 2008) and foot-and-
mouth disease (Thornley and France 2009).

Most models cited above could generally be described as
‘robust’ and predict animal performance under a range of
circumstances with reasonable accuracy. Components of
several models continue to be upgraded and improved. New
components are being added including representations of
disease (Sandberg et al. 2006; Black 2009), macromineral
balances and greenhouse gas emissions (Rigolot et al. 2010).
Several models include components that allow the exploration of
strategies to ameliorate environmental pollution from cattle
including methane emissions (Ellis et al. 2008), nitrogen (Ellis
et al. 2011) and phosphorus (Kebreab et al. 2008).

Some models predict enterprise profitability and cash flow,
while others identify management strategies that optimise the
use of enterprise resources for maximum profit (Black et al.
1993; Gous and Berhe 2006). Others contain ‘expert systems’ to
aid the interpretation of model outputs by people other than
those involved in construction of the model (Menzies et al.
1990; Oltjen et al. 1990). Several animal models are also
linked directly to least-cost diet formulation software where
nutrient requirements predicted by the simulation model are
transferred to a diet formulation predictor (Black et al. 1993;
de Lange et al. 2001; Ferguson 2014; Gous 2014).

Although many models have been of substantial value for
analysing specific farm enterprise options (de Lange et al. 2001;
Nagorcka and Zurcher 2002; Black and Banhazi 2013; Ferguson
2014; Gous 2014), their uptake by industry has been less than
anticipated. The models have been valuable for assessing the
impacts of alternative management strategies in isolated
applications and for setting research priorities, but they have
not been used for day-to-day decision making as had been
envisaged by many of the model developers. The remainder of

this paper examines several areas where models could be
improved to better predict reality of animal performance and
what may be needed to encourage their use for everyday decision
making on farm.

Gaps in animal nutrition models

Several important areas of animal models must be improved to
more effectively simulate the performance of commercially
raised livestock. The following three are considered: prediction
of feed intake and incorporation of maximum energy intake into
diet formulation software; inclusion ofmethyl-donormetabolism
and requirements; and mechanistic representation of the immune
response and diseases.

Prediction of voluntary feed intake

An accurate prediction of feed intake is the most critical step in
all animal models for realistic determination of the efficiency of
nutrient utilisation and of animal performance. Many different
concepts and approaches have been used to model feed intake
of animals (Black 2009). These include (1) simple algorithms
fitted to experimental data and based largely on animal weight
and the available energy content and/or composition of the diet
(Poppi 2008; Black 2009); (2) maximum efficiency of oxygen
utilisation with animals ceasing to eat when the intake of net
energy per litre of oxygen consumed is maximised (Tolkamp
and Ketelaars 1992); (3) minimal discomfort theory where feed
intake corresponds with the minimal total physical and
metabolic discomfort experienced by an animal (Forbes 2007,
2009); (4) continual minute by minute prediction of the energy
and protein status from metabolite concentrations in blood and
of rumen fill in cattle relative to pre-determined limits using a
binary system to initiate and terminate feeding bouts (Nagorcka
et al. 2004); (5) the potential-constraint theory where an animal
will eat to satisfy its total energy needs determined by its
genetics and physiological state unless constrained by various
dietary, environmental, health or social factors (Black et al. 1986;
Nyachoti et al. 2004; Poppi et al. 1994); and (6) first limiting
nutrient theory where animals eat to meet their requirements for
the first limiting nutrients in the feed (Emmans 1981; Kyriazakis
and Emmans 1998).

Although there are limitations to each of these approaches
for predicting voluntary feed intake, the potential-constraint and
first limiting nutrient concepts appear to be the most effective
over a wide range of situations (Black 2009; Ferguson 2014).
However, these have limitations. First, Forbes (2009) criticised
the approach of a single, but changeable feedback mechanism
limiting feed intake, because it does not fit with physiology
concepts of how an animal functions. Second, whenever the
model iteration interval is greater than a few minutes, being
1 day in many of the models mentioned, the commencement
and cessation of feeding bouts cannot be predicted nor can the
impact be predicted from variations within a day as occurs with
changes in pasture availability or with changes in climatic
conditions. These criticisms have been overcome by an
approach similar to that used by Nagorcka et al. (2004) where
the concentration of crucial metabolites controlling hunger and
satiety within the blood is predicted on a minute by minute basis.
Similarly, several models using the first limiting nutrient
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approach have used hourly rather than daily integration intervals
(Ferguson 2014; Gous 2014). However, no current animal model
truly represents the biological control of feed intake. There is an
opportunity to develop amore comprehensivemechanisticmodel
of voluntary feed intake in animals on the basis of current
understanding of the metabolic and physical regulation of
intake. This could be achieved by describing essential
metabolic pathways, changes in metabolite pool sizes and
physical, neural and endocrine interactions in a model with
short iteration intervals.

Voluntary feed intake is controlled by the following twomain
processes: (i) rate of removal of digesta from the gastrointestinal
tract (GIT) through changes in transit time and in the rate of
digestion and absorption of dietary constituents; and (ii) brain-
controlled hunger and satiety responses resulting from the
physical consumption of feed, absorption of products of
digestion and metabolites produced from subsequent
biochemical reactions. Although the broad mechanisms for
feed-intake control are similar for ruminants and monogastric
animals (Roche et al. 2008; Black et al. 2009), understanding
of these mechanisms is more advanced for the latter group of
animals. The processes that could be modelled for monogastric
animals, particularly thepig, are summarisedbelowanddescribed
in detail by Black et al. (2009).

Feed intake is stimulated in monogastric animals as the rate
of passage of digesta increases, particularly through the stomach
and small intestine. Physical characteristics of the diet that
cause mild distension stimulate the rate of stomach emptying
and propagative peristaltic contractions in the GIT and increase
feed intake. However, excessive distension inhibits these
responses, slows rate of passage and induces satiety via the
vagus nerve–hindbrain–forebrain reflex. Increasing the amount
of indigestible fibre, or other undigested particles, in a diet for
pigs can increase or decrease rate of passage and feed intake
depending on the amount of fibre and size of particles. Small
indigestible fibre particles are less effective for stimulating rate
of passage than are medium-sized particles, which in turn, are
more effective that very large particles. Excessive distension of
the GIT and reduced rate of passage can also be caused by diets
with high soluble fibre content that increases digesta viscosity.
Although precise details of the interactions between particle
size, viscosity and gut anatomy are not fully understood,
development of components of the model based on the
principles of rheology would allow these relationships to be
explored and to identify whether more experiments are
required to clarify the interactions.

Nutrients and their metabolites, present in the GIT and
absorbed, control feed intake over the short and long term
through the direct or indirect release of endocrines and their
interaction with local and central neural processes. Consumed
carbohydrates, fats and proteins that are partially digested by
mammalian and microbial enzymes directly affect the release of
hormones from the (GIT) and pancreas (peptide tyrosine tyrosine
(PYY), glucogon-like peptide-1 (GLP-1), oxyntomodulin and
apolipoprotein A-IV). The quantitative and temporal release of
these hormones depends on the composition of nutrients
consumed, their site and extent of digestion and products
released within the GIT. They appear not to be released if the
ingredients are indigestible, as these indigestible particles appear

to simply stimulate the rate of digesta passage. The nutrient-
released hormones act to slow the rate of stomach emptying,
reduce the frequency, pressure and progressive distance of
peristaltic contractions in the small intestine and reduce feed
intake. The action of these hormones has been defined as the
ileal brake (Spiller et al. 1984). Hence, rate of passage can be
stimulated by mild distension, but inhibited by excessive
distension and the presence of undigested nutrients near the
terminal ileum and colon. The nutrient-stimulated hormones
also act through the vagal nervous system or directly on
specific regions of the brain to have longer-term effects on
reducing feed intake.

In animal nutrition models, it has not been traditional to
model the release of endocrines, interactions between physical
distension and neural control of functions. However, some
aspects of these mechanisms have been undertaken in models
of human metabolic control and should now be attempted in
animal systems (Dalla Man et al. 2007; Farhy 2010; Chambers
et al. 2013). Furthermore, recent research shows that the rate of
digestion of grains and pulses in the small intestine of pigs is
closely related to the diffusion rates of amylolytic and protease
enzymes into the feed particles (Al-Rabadi et al. 2009, 2011a,
2011b; Mahasukhonthachat et al. 2010a, 2010b; Dhital et al.
2010; Tinus et al. 2012). The rate of enzyme diffusion appears
to be influenced by several factors including particle size,
physical and chemical characteristics of the grain such as
degree of compaction, hardness, endosperm cell-wall integrity,
gelatinisation, retrogradation of starch and surface hardening of
pellets. Amylase diffusion rates were found to be eight times
slower than diffusion rates of water for barley grain and 13 times
slower for sorghum (Al-Rabadi et al. 2009). Enzyme diffusion
rate and digestion rate has been shown to decreasewith the square
of grain particle size, with a doubling of particle size reducing
starch digestion rate four-fold (Al-Rabadi et al. 2009). These
concepts relating enzyme diffusion rates to digestion rate of feed
ingredient components, in combination with estimates of the
rate of gastric emptying and peristaltic activity within the
small intestine determining rate of digesta passage, could
readily form the basis for mechanistic simulation of the effects
of digestive processes on feed intake.

Such a modelling approach would enable quantitative
prediction of nutrients digested in both the small and large
intestines. Having the capacity to distinguish between small and
large intestine digestion is important in monogastric animals to
estimate the composition of the nutrients absorbed and to predict
the loss of energy from the animal as heat of fermentation or in
methane and voided gut microbes.

Long-term control of feed intake, energy metabolism, body
composition and bodyweight is under the influence of two
opposing energy monitoring systems within the body. These
are adenosine monophosphate-activated protein kinase
(AMPK) and mammalian target of rapamycin (mTOR), which
act both peripherally and centrally within the hypothalamus.
AMPK is activated by metabolic or environmental conditions
that deplete cells of ATP by monitoring the adenosine
monophosphate (AMP) : ATP ratio. AMPK inhibits ATP-
consuming pathways and stimulates ATP-producing catabolic
pathways through the regulation of key metabolic enzymes
involved in lipid, carbohydrate and protein metabolism.
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Within the hypothalamus,AMPK regulates the concentration of a
key intake controlling metabolite, malonyl-CoA. Low energy
status and high AMPK activation also lead to inactivation of
mTOR which, contrary to AMPK, reflects high energy status of
an animal. Activation of mTOR within the hypothalamus is
also controlled by insulin and leptin. Basal insulin and leptin
concentrations are directly proportional to the amount of fat, or
adiposity status, of an animal. Malonyl-CoA and mTOR have a
central role in controlling expression of the hypothalamic
melanocortin system, which has a major role in regulating feed
intake and energy expenditure. Low energy, or adiposity status,
results in low concentrations of malonyl-CoA and low activation
of mTOR, which stimulates the expression of melanocortin
system orexigenic peptides, neuropeptide tyrosine and agouti-
related peptide, and reduces the expression of anorexigenic
peptides, proopiomelanocortin, a-melanocyte-stimulating
hormone and cocaine and amphetaminerelated transcript,
thereby increasing intake and reducing energy expenditure.
Conversely, high energy status with high concentrations of
malonyl-CoA and high activation of mTOR, reduce the
expression of the orexigenic peptides, increase the expression
of anorexigenic peptides and reduce feed intake, while increasing
energy expenditure.

These perceived mechanisms of interactions between current
and long-term energy status and eating bouts of animals could be
readily simulated. The modelling could be either at a metabolic
level similar to that described above or at a simpler level based on
a prediction of current energy status of the animal through, for
example, blood metabolite concentrations as used by Nagorcka
et al. (2004), in combination with an ongoing estimate of current
adiposity relative to a genetic potential.

Feed intake potential in diet formulation

Diet-formulation software used to combine available ingredients
to meet nutrient requirements of animals at least cost does not
consider the effects of the ingredients on feed intake. The value
of a diet as an energy source to an animal depends on the total
amount of energy made available for metabolism in megajoules
per day. Total energy available to an animal is determined by
the amount digested along the whole digestive tract, when
accounting for energy losses from the animal associated with
microbial digestion through heat of fermentation and methane,
(energy content, MJ/kg) and the total amount of the diet
consumed (kg/day). Animal performance and productivity is
driven by the intake of metabolisable energy.

The digestible, metabolisable or net energy content of each
ingredient is used in current feed-formulation software to predict
the combination of ingredients that will meet a specified energy
content of the formulated diet. Results from a large research
program in Australia investigating the energy value of cereal
grains for different livestock types (Black 2014), show there is
little relationship between the available energy content of
grains and voluntary feed intake when the grains are
incorporated into diets. The correlation coefficients relating
diet intake to digestible energy (DE) content of grains were
0.07, �0.34, 0.39 and �0.24 for cattle, pigs, broiler chickens
and layers respectively. The lack of a clear relationship between
DE content of grains and intake is further illustrated by the

results from Cadogan et al. (1999), where the DE content of
five different cultivars of wheat fed to young pigs ranged only
from 14.39 to 14.96 MJ/kg dry matter (4%), but feed intake
ranged from 389 to 691 g/day (78%, Table 1). These low and
negative correlations illustrate that formulating diets with high or
low DE content does not guarantee high or low total energy
intakes. The poor relationship between DE content and intake
reinforces the information outlined in the previous section of this
paper, which suggests different characteristics of diets determine
digestibility and intake.

Thus, the effect of an ingredient added to a diet on feed intake
needs to be incorporated into least-cost feed-formulation
software. There are two possible ways this could be achieved.
First, an intake value could be applied to each ingredient and
ingredients combined to maximise this value at least cost. For
example, an apparent metabolisable energy (AME) intake
index has been applied to ~300 cereal grains, including wheat,
barley, triticale, sorghum, maize and rice fed to broiler chickens
(Black et al. 2014). The index was derived by measuring the
AME content (MJ/kg) and feed intake (kg/day) in 22-day-old
broiler chickens to calculate AME intake (MJ/day). The AME
intake for each grain was then divided by the highest AME intake
value to provide an AME intake index with theoretical values
from 0 to 100. The index value was used rather than the MJ/day
intake value because the latter is not constant and changes
each day as a chicken grows. The index provides a constant
estimate of the relativity between grain samples in the amount
eaten when incorporated into a diet. Near-infrared spectroscopy
calibrations have been developed to predict the AME intake
index value for any cereal grain (Black et al. 2014). Similar
calibrations have been developed for predicting the DE intake
index for growing pigs.

As cereal grains represent from 60% to 70% of diets used in
commercial pig and poultry enterprises, application in feed
formulation software of an intake index value to cereal grains
alone would be a valuable method for taking some account of the
effect of grain combinations on likely feed intake of animals.
However, as illustrated in the previous section, the addition of
other ingredients that alter the rate of passage of digesta, such as
indigestible fibre or components that change digesta viscosity,
can havemarked effects on feed intake.Hence, a second approach
would be to imbed a mechanistic model of feed intake within
the feed-formulation software to calculate the impact of all
ingredient combinations on feed intake. Algorithms that would
maximise intake while supplying other specified nutrients at
least cost would need to be incorporated into the feed

Table 1. Digestible energy (DE) content of wheat grain cultivars and
intake by young pigs of diets containing the same wheat samples

From Cadogan et al. (1999). Values within columns followed by the same
letter are not significantly different (at P = 0.05)

Wheat cultivar DE (MJ/kg) Diet intake (g/day)

Currawong 14.96a 389a
Dollarbird 14.51b 537b
Rosella 14.49b 551b
Thriller 14.39b 691c
Lawson 14.87ab 691c
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formulation software. This would not be a trivial task, but is a
logical extension from development of mechanistic models of
feed intake and putting them into day-to-day use.

Methyl-donor requirements

The addition of a methyl group to metabolites and other
compounds within the body is essential for maintenance of
life within animals. Over 300 methylation reactions have been
identified (Brosnan and Brosnan 2006).Methylation is necessary
for many functions, including the following: biosynthesis of
creatine, phosphatidylcholine and adrenalin; metabolite
transport across cell membranes; DNA function and gene
expression; hormonal signalling of insulin, growth hormone and
corticosteroids; neurotransmission; immune function; muscle
contraction; cell growth; protein synthesis; cell membrane
integrity; removal of toxins and oxygen free radicals; and others
(Brosnan et al. 2007; Obeid 2013). Methylation of DNA has
an important role in epigenetics and the translation of gene
expression across generations (Niculescu 2012). Abnormal
methylation, either hypo- or hypermethylation, is associated
with numerous disorders, including embryonic death, neural-
tube dysfunction, low cognitive ability, diabetes, cardiovascular
disorders, Alzheimer’s disease, fatty liver syndrome,
osteoporosis, low immunity, cancer, osmotic stress and others
(Cronjé 2008; Obeid 2013).

Although the methyl group is a simple carbon–hydrogen
molecule, CH3, it has long been recognised that all methyl
groups are initially derived from the diet (Anon 1947). Many
compounds containmethyl groups, but methyl donors are unique
in that the methyl group is attached either to a sulfur or nitrogen
molecule. Despite the essential role of methyl groups in animal
metabolism and their need to be supplied from the diet, animal
nutrition specialists have not included methyl groups in diet
formulation software, nor their metabolism within simulation
models.

Maintenance of methyl groups within an animal is controlled
through the methionine cycle. The control of the methionine
cycle has been widely studied and is now well understood
(Mudd et al. 2007; Williams and Schalinske 2007; Cronjé
2008). The process is summarised in Figs 1 and 2. Methionine
is converted to S-adenosylmethionine (SAM) via two isomers
of the enzyme methionine adenosyl transferase (MAT I, MAT
III). These interacting enzymes maintain the concentration of
methionine, and therefore SAM, within close limits despite wide
fluctuations in methionine supply. SAM is responsible for the
transfer of methyl groups to other compounds within the body,
which results in the formation of S-adenosylhomocysteine
(SAH). SAH is converted to homocysteine (HCY) via SAH
hydrolase in a reversible reaction, which favours the synthesis
of HCY unless there are perturbations to the cycle. HCY
concentrations are kept low by the irreversible transsulfuration
of HCY to cystathione and then to cysteine, which is used for the
synthesis of several essential compounds including glutathione,
taurine, coenzyme A and proteins. The conversion of HCY to
cystathione requires vitamin B6. HCY is also converted back to
methionine to complete the methionine cycle with methyl
groups coming either from 5-methyl tetrahydrofolate or from
betaine. Vitamin B6 and B12 are required as cofactors in the
folate cycle which provides the methyl group for one reaction
convertingHCYback tomethionine. The folate cycle depends on
a supply of dietary folate. Similarly, when betaine is used for
transmethylation ofHCY tomethionine, betaine is required in the
diet or can be synthesised from dietary choline.

The methionine cycle is normally under precise regulation to
maintain constant supply of methyl groups to perform the many
reactions for which they are needed. However, there must be an
optimum supply from the diet of methionine, folate, betaine,
choline and vitamin B6 and B12 to maintain this equilibrium. A
deficiency of any one of methionine, folate, betaine and choline
can be partially compensated for by the others, but the cycle is
readily perturbed if dietary provision of these compounds and the

Fig. 1. Normal allosteric regulation of enzymes of the methionine cycle by S-adenosyl methionine (SAM).
A plus symbol indicates stimulation of enzyme activity and a minus symbol indicates inhibition of enzyme
activity. The thickness of arrow lines is scaled according to the magnitude of the flow along the indicated
paths. BHMT, betaine-homocysteine methyltransferase; CBS, cystathionine b-synthase; CYS, cysteine
HCY, homocysteine; MAT, methionine adenosyl transferase; MET, methionine; MS, methionine synthase;
MTHFR, 5,10-methylenetetrahydrofolate reductase; SAH, S-adenosylhomocysteine; and THF,
tetrahydrofolate). From Cronjé (2008).
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cofactors vitamin B6 and B12 are not optimal. Perturbation of
the cycle results in excess concentrations of HCY (Obeid 2013),
with many negative effects on metabolic processes in an animal
and a resultant lowering of production and health status.

Several mathematical models of the methionine cycle have
already been developed and used to explore circumstances in
human nutrition and health (Reed et al. 2004, 2006, 2008;
Prudova et al. 2005; Nijhout et al. 2006). There is an opportunity
for animal scientists to further develop models of the methionine
cycle and to quantify the need for transmethylation reactions
under a range of genetic and environmental situations. The
ultimate objective from developing such models would be
prediction of the optimal amount of each of the dietary
components (methionine, cysteine, folate, betaine, choline,
vitamin B6 and vitamin B12) needed for predetermined rates of
animal production for animals varying in genetic background
and in different environments. The circumstances that lead to
either hypo or hypermethylation of DNA and the consequences
for epigenitic effects may be a predicted outcome from such
mechanistic models. Furthermore, since these models could
predict precise dietary requirements for all components
needed for full functionality of the methionine cycle, these
requirements could then be incorporated into diet formulation
software. This long-neglected area of animal nutrition, where the
dietary need formethyl donors has not been considered, would
be addressed.

Mechanistic representation of disease

Stimulation of the immune response associated with high
microbial load and pathogens has a major impact on the
performance of intensively reared animals. Commonly, the
performance of commercially raised pigs is ~20% less than for

pigs grown in ideal environments (Black et al. 2001). Although
group penning contributes to this decrease in performance, a
major effect is through stimulation of the immune system.
Similarly, chickens reared in a germ-free environment were
shown to grow 18% faster and have 11% greater feed
conversion efficiency than those raised in a commercial
environment (Muramatsu et al. 1988).

Diseases and immune stimulation affect several
physiological functions of animals, including feed intake,
oxygen exchange rate, efficiency of energy utilisation, body
protein synthesis and catabolism, body temperature control
and tolerance to heat stress. Klasing (2007) estimated that total
lysine requirements of chickens increased by 7–10% in
association with upregulation of the immune system. The
major contributors to the increase in lysine requirements were
hypertrophy of the liver and production of acute-phase proteins.
The acute-phase proteins also contain higher proportions of
cysteine than do muscle proteins and cysteine requirements
have been estimated to increase by 7% during immune
stimulation. Several measurements of oxygen consumption in
humans with sickle cell disease (Borel et al. 1998) or other forms
of trauma (Roe and Kinney 1965) suggest that fever increases
metabolic rate by ~10–15%, with most of the increase in
energy expenditure being due to increases in the rate
of protein turnover associated with infection.

The effects of disease have not been incorporated into many
models developed for predicting animal growth, except in a
simple form. For example, in pig models, Moughan (1995)
incorporated the overall effect of the environment, including
disease, by reducing potential protein deposition to an
‘operational maximum’ rather than using the ‘genetic
maximum’. Similarly, for the model of Black et al. (1986), it
is recommended that the potential rate of protein deposition and

Fig. 2. Perturbed allosteric regulation of enzymes of the methionine cycle by S-adenosylhomocysteine (SAH). Accumulation of
HCY reverses the direction of the SAH–HCY reaction and increases the level of SAH. Deficiencies of compounds that may result in
accumulation of HCY are encircled. A plus symbol indicates stimulation of enzyme activity and a minus symbol indicates inhibition of
enzyme activity. The thickness of arrow lines is scaled according to the magnitude of the flow along the indicated paths. BHMT, betaine-
homocysteine methyltransferase; CBS, cystathionine b-synthase; CYS, cysteine; DNMT, DNA methyltransferase; GAMT,
guanidinoacetate methyltransferase; GNMT, glycine N-methyltransferase; HCY, homocysteine; MET, methionine; MS, methionine
synthase; MTHFR, 5,10-methylenetetrahydrofolate reductase; PEMT, phosphatidylethanolamine methyltransferase; SAM, S-adenosyl
methionine; and THF, tetrahydrofolate. From Cronjé (2008).
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feed intake are depressed, while maintenance requirement is
increased when simulating the effects of disease (Mullan et al.
1994). However, recognition of the importance of diseases in
commercial pig production has resulted in several concerted
efforts to develop approaches for simulating the effects of
diseases on feed intake and performance within pig models
(Sandberg et al. 2006; Black 2009; Kyriazakis and Doeschl-
Wilson 2009).

These more detailed approaches for modelling disease
assume that there is usually a lag between the time of infection
and discernable physiological responses; the magnitude of the
responses depends on the severity of the disease as determined
by the pathogen load and virulence; there may or may not be a
recovery phase, depending on the disease and its severity;
recovery in the physiological function may or may not reach
pre-infection levels; time to recovery depends on nutritional
status of the animal; the magnitude of the response is
influenced by pig genotype; and animals previously infected
with a specific disease may be immune to further infection or
have a diminished response. Many of these concepts are well
developed by Sandberg et al. (2006) in relation to predicting
the effects of disease on feed intake. However, more effort is
required to develop parameters for the algorithms for each of
the major diseases affecting pigs or other animals before they
can be used effectively in practical models.

Future application of models

Value and limitations of models for practical decision
making

Despite the enormous potential benefits that should come to
practical agriculture through the integration of fundamental
scientific knowledge, simulation models have had limited
success in helping everyday farm management (Newman et al.
2000; Becu et al. 2008; Ferguson 2014; Rivera-Torres 2014).
The most successful models have been those around which
business decisions depend, as illustrated by the almost
universal use of diet formulation software by the intensive
animal industries. Furthermore, some of the more complex
models, although not used directly by farm managers, have
had a major impact on understanding and have significantly
influenced farm practice. Keating and McCown (2001)
provided an example of a complex pest-control model that was
used to set simple rules on when to spray or not spray and these
rules are now generally applied by farmers. Similarly, the pig
model described by Black et al. (1986) showed that, provided
humidity was less than 90%, maintenance of wet skin for
evaporation would prevent heat stress and this prediction led
to the introduction of spray cooling systems within Australian
piggeries from the late 1980s.

There are several important reasons for failure of most of
simulation models to have a significant impact on decision
making at the enterprise level and to influence farm
profitability. Many systems have been developed by scientists
without close knowledge of the decisions that are made on farms
or businesses. Their primary purpose was frequently to better
understand the biological and physical interactions of a system.
The earlier detailed mechanistic models often addressed many
biological interactions in great detail, but did not include

specific components that relate to the economic decisions that
need to bemade at the business level. There is clear evidence that
the most successful models for field application have involved a
close association during development between the model
builders and end users (Ferguson 2014). Successful adoption
is improved greatly when the emphasis of model development is
on its application as well as on science. However, even those
animal models that were constructed in consultation with end
users and include integrated diet formulation software, profit
optimisation, cash flow predictions and expert systems to
interpret results (Black et al. 1993), are generally not used
consistently to make day-to-day enterprise decisions.

Many animal models are complex and require a great deal of
time to understand how they operate and the details of their
underlying concepts. Most models require a large number of
inputs to run the simulations. This information, such as
temperature and humidity changes, air flow rates, genotype
description, initial weights, health status, and others, is often
not readily obtained at the enterprise level. Finally, most
enterprises do not take measurements of farm productivity in
sufficient detail to allow the accuracy of the model outputs to be
evaluated. A survey of the Australian dairy industry found that
farmers and their consultants believe they can rarely afford the
time for these activities and are often unconvinced therewill be an
increased return in profit from the effort involved (Black 2005).
There is a perception among these groups that many biological
relationships in agricultural systems have what is known as ‘flat’
response curves and payoff functions (Pannell 2004). The
consequence of these flat functions is that there is a wide
range over which inputs can vary, without major effects on
profitability. Thus, there can be a wide margin for error in the
actual inputs used with little consequence on performance,
profitability or risk. Farmers, therefore, frequently do not see
any major difference in profitability when inputs are optimised
compared with decisions that are ‘more-or-less’ correct. An
important application of simulation models is to identify which
response surfaces are not flat and where small changes in inputs
can have marked effects on productivity and profitability.

Decision-making process

Most models are known as ‘hard’ systems and deal only with
the biophysical aspects of animal enterprises. However, decision
making includes ‘soft’ systems components relating to personal
and social factors that are rarely taken into account during model
development (Newman et al. 2000). The following five steps
in decision making have been recognised: (1) appraising the
challenge and identifying the problem; (2) surveying the
alternative solutions; (3) weighing the advantages and
disadvantages of the alternatives; (4) deliberating about
commitment to the decision; and (5) taking action (Robinson
2004). All five phases regularly present difficulties to decision
makers, yet most animal models assist with only phases (2) and
(3). For many enterprise managers, the challenge or problem is
not recognised. When the problem is recognised, managers
frequently would like someone else to use the simulation
model to provide the quantitative information relating to
phases (2) and (3) and then allow them to make the final
decisions in relation to their own specific goals and aspirations.
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Ferguson (2014) listed the following five factors that he
believes are essential for the adoption of animal models by
enterprises: (1) all significant stakeholders are part of the
model design and development process; (2) foster a modelling
culture in the enterprise; (3) ensure robust scientific theory and
biology within the model with flexibility to add new components
as required; (4) include a capacity for the model to optimise
management strategies that enhance profit; and (5) spend time to
ensure that customers gain confidence in the model for decision
making. Although each of these points is important, ongoing
commitment from themodel ‘champions’ is required to ensure its
continuing application within the enterprise. An additional
component is required if animal models are to be adopted and
continuously used for day-to-day decisionmaking in commercial
enterprises – the models must fit seamlessly into and become an
essential part of the enterprise management system.

Integration of models into farming systems for real-time
decision making

Electronic measurement, interpretation and control of
industrial manufacturing are common practice and are being
incorporated into animal enterprises through precision
livestock-farming systems (Wathes et al. 2008; Banhazi et al.
2012; Pomar et al. 2014). Detailed animal simulation models
should become an integral part of such systems, particularly for
intensive livestock industries where variation among individual
animals contributes to major inefficiencies in resource use and
limit enterprise profitability. Methods for integrating pig
models into precision farming systems have been described in
recent years (Banhazi and Black 2009, 2011; Banhazi et al.
2012; Hauschild et al. 2012; van Milgen et al. 2012; Pomar
et al. 2014). Although concepts vary, the principles involve
the use of existing or developing electronic technologies to
identify individual animals, measure important environmental
variables, monitor individual animal weight and body condition,
monitor individual or herd health status, as well as control feed
composition and feed intake for each animal. Models will run in
real timewith a separate simulation for each pig in the group. The
model will become integral to day-to-day management by:
(1) automatically combining available diets to optimise amino
acid content for individual pigs depending on relative prices of
ingredients and price penalties for fat pigs; (2) determining
whether ambient temperature is above or below thermoneutral
and the relative costs and benefits from altering environmental
temperature and wind speed leading to automatic environment
control; (3) identifying whether pigs are under- or over-stocked
and the economic benefit from adjusting stocking rate;
(4) manipulating feed supply to each pig to ensure optimum
growth rate and body composition for meeting specific buyer
pricing regimes to maximise profit; and (5) selling individual
pigs at a time that maximises enterprise returns.

Animal simulation models that integrate current relevant
knowledge are envisaged to become an indispensible and
virtually invisible part of the management of future intensive
animal enterprises. Electronically measured data will be
incorporated intomodel simulations, the data interpreted through
the model and used to control feeding, the environment and sale
of animals in real time to maximise profit.

Conclusions

Animal simulation models have progressed greatly since the
first use of mathematical equations to describe animal functions
100 years ago. Most of the current animal-nutrition models
represent animal systems well and several have been used to
successfully predict outcomes that had not previously been
observed. Nevertheless, there are opportunities for further
development of specific aspects of animal models. These
include a more mechanistic representation of the control of
feed intake, prediction of methyl-donor requirements and
representation of the methionine cycle and methylation
processes, and more mechanistic representation of individual
animal diseases and the effects of microbial loads within
commercial animal environments. Few models have been
used for day-to-day decision making on farm, partly because of
the: complexity of the models; difficulty in obtaining
accurate information needed as model inputs; and flat pay-off
response curves for many agricultural systems. However, a
strong future for animal models is envisaged when they will be
incorporated into precision livestock-farming systems, run real
time for individual animals and will be used to electronically
control operations within an enterprise.
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