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Abstract
Context. Genomic-based technologies are allowing commercial beef producers to predict the genetic merit

of individual animals of unknown pedigree with increased ease and accuracy. Genomic selection tools that can
accurately predict the feedlot and carcass performance of steers have the potential to improve profitability for the beef
supply chain.

Aims. To validate the ability of the Angus SteerSELECT genomic product to predict differences in performance of
Australian Angus steers, in terms of carcass weight, marbling score, ossification score and carcass value, using a short-fed
(100 days) or long-fed (270 days) finishing protocol at a commercial feedlot.

Methods. A reference population of 2763 Australian Angus steers was used to generate genomic prediction
equations for three carcass traits, namely, carcass weight, marbling score and ossification. The accuracy and bias of
genomic predictions of breeding values were then evaluated using a validation population of 522 Angus steers, either
short- or long-fed at a commercial feedlot, by comparing breeding values to measured phenotypes. The potential
economic benefits for feedlot operators when using Angus SteerSELECT were estimated on the basis of the ability of
the tool to predict the carcass value of steers in the validation population.

Key results. The accuracy of genomic predictions of breeding values for carcass weight, marbling score and
ossification score were 0.752, 0.723 and 0.734 respectively. When steers were ranked in quartiles for predicted carcass
value, calculated using genomic predictions of breeding values for carcass weight and marbling score, the least-square
mean carcass value for steers in each quartile, from bottom 25% predicted performers to top 25% predicted performers,
were estimated at A$1794, A$1977, A$2021 and A$2148 for short-fed steers and A$3546, A$3780, A$3864 and A
$4258 for long-fed steers. Differences in the carcass value least-squares mean between the bottom and top quartile were
highly significant (P < 0.001) for both short-fed and long-fed steers.

Conclusions.Genomic prediction equations used in Angus SteerSELECT can predict differences in carcass weight,
marbling score, ossification score and carcass value in both short-fed and long-fed Australian Angus steers.

Implications. Genomic selection tools that can predict differences in performance, in terms of growth and carcass
characteristics, of commercial feedlot cattle have the potential to significantly increase profitability for the beef supply
chain by improving the quality and consistency of the beef products they produce.
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Introduction

Genomic-based technologies are allowing commercial beef
producers to predict the genetic merit of individual animals in
their herds of unknown pedigree with increased ease and
accuracy. Information on the predicted genetic merit of

individual animals can be used by commercial producers to
inform breeding selection decisions, such as identifying
replacement breeding females, and to inform management
decisions, matching animals to the most appropriate finishing
path and end market destination.
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Many variables contribute to the profitability of feedlot
cattle including initial purchase price, feed costs, health-
related costs, facility depreciation and maintenance costs,
labour costs, transport costs, processing costs and carcass
value at slaughter. Certain variables such as facility
depreciation and maintenance, labour, transportation and
processing can be estimated with some certainty when
calculating expected returns, whereas other variable costs,
such as initial purchase price, feed costs and carcass value
at slaughter, are more difficult to estimate because they can
fluctuate significantly with commodity markets. Feedlot
operators often utilise forward contracts to lock in
commodity prices for fixed time periods and provide some
certainty around input costs and expected returns in fluctuating
markets. The unexpected variation in performance of cattle
during feedlot finishing can also have a major impact on
profitability and is also difficult to predict without
information on the genetic potential for animals to perform
in the feedlot environment.

It is common practice for commercial beef producers in
Australia to purchase sires from seed-stock producers to access
registered bulls with known genetic backgrounds (Angus
Australia 2019). Feedlot operators attempt to reduce the
risk of animals underperforming at the feedlot or in the
chiller by using a combination of decisions based on prior
management history of cattle or by purchasing cattle from
vendors with a known performance history or targeting new
vendors who are known to manage their herds well and use
sires of known genetic background. However, cattle from
preferred vendors are not always available for purchase
when required or in numbers required and genetic variation
between animals is observed in all herds, including those with
known genetic backgrounds. For example, in a cohort of long-
fed steers (n = 71) included in the validation population for the
present study (see details below), which were of a similar age
and from the same herd, carcass weights varied from 393 kg to
515 kg and marble score varied from 340 to 800. If some of
this between-animal variation could be predicted, feedlot
operators could select animals with potential to perform
better in their production system to improve financial
returns. Therefore, a genomic-based tool that can predict
the performance of steers could be used by feedlot
operators or others in the beef-supply chain (e.g. breeders,
backgrounders and brand owners) to better inform selection
decisions, identify the most appropriate finishing path for
animals once purchased and improve their ability to
consistently meet market specifications. Such a test could
be considered as a risk-management tool, aimed at reducing
the risk of animals underperforming.

There are several genomic products currently available for
commercial beef producers in Australia, including a test aimed
at informing selection of replacement Angus females
(HeiferSELECT, Angus Australia, https://www.angusaustralia.
com.au/education/breeding-and-genetics/angus-heiferselect/)
and a test aimed at predicting the genetic potential of
crossbred beef heifers, steers and commercial bulls
(Igenity® Beef, Neogen, https://www.neogen.com/igenity-
beef/). The accuracy of genomic predictions is known to
be affected by the heritability of the trait being predicted,

the size and relevance of the reference population used to
generate predictions and the relatedness of the animals being
tested to those in the reference population. With this in mind,
we have developed a genomic product specifically aimed at
predicting differences in performance of Australian Angus
steers during finishing under Australian feedlot conditions
called Angus SteerSELECT. We report here the results of the
initial Phase 1 validation of Angus SteerSELECT, in which
genomic estimated breeding values (gEBVs) generated for
steers in a validation population were compared with their
measured phenotypes for three traits, namely, carcass weight,
marbling score and ossification score, assessed at slaughter
following steers undergoing either a short-fed (100 days) or
long-fed (270 days) finishing protocol. We hypothesised that
Angus SteerSELECT would be able to predict differences in
carcass weight, marbling score, ossification score and carcass
value of Australian Angus steers solely on the basis of their
genomic profile and genetic predictions when either short- or
long-fed, under standard Australian commercial feedlot
conditions.

Materials and methods

Reference and validation population details
Phenotypes and matching genotypes were available for 3372
steers that were progeny of the Australian Angus Sire
Benchmarking Program (ASBP), representing Years 1–7 of
the program (described as Cohorts 1–7 respectively). The
ASBP is a major initiative of Angus Australia with support
from Meat & Livestock Australia (MLA) and industry partners
that aims to generate progeny test data on contemporary Angus
bulls, particularly for hard-to-measure traits such as feed
efficiency, carcass measurements, meat quality attributes and
female reproduction (https://www.angusaustralia.com.au/sire-
benchmarking/about/general-information/). A subset of these
steers (n = 2763), representing Cohorts 1–6, were used to form
a reference population fromwhich genomic prediction equations
were generated for each trait. A further subset of steers (n = 522)
representing Cohort 7 were used to form a validation
population to compare gEBVs with measured phenotypes
for selected traits. A small number of steers (n = 87) were
excluded from the reference and validation populations
because of restrictions imposed on having age at
measurement recorded and a minimum number of animals
permitted in fixed-effect categories when undertaking
analyses. By design, there were minimal sire linkages
across cohorts of the ASBP. For example, Cohort 7 steers
were the progeny of 56 sires, of which only 14 had progeny in
Cohort 6 and one had progeny in Cohort 5.

Phenotypic data collection
Steers included in the reference and validation populations
were born on ASBP co-operator herd farms where they
remained until post-weaning. Most steers were
backgrounded on pasture at their property of origin until
reaching feedlot entry weights and were then transported
directly to the feedlot. A small number of steers were
backgrounded on pasture at a location other than their
property of origin and were then transported from that
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location to the feedlot once reaching feedlot entry weights. All
steers (Cohorts 1–7) were initially transported to Tullimba
feedlot (University of New England, Armidale, NSW,
Australia) where their feed efficiency was assessed using
the GrowSafe® System. Steers were fed at Tullimba for a
minimum of 100 days. All steers in Cohorts 1–4 and a subset
of steers from Cohorts 5–7 (n = 2682) were then transported
to a commercial feedlot in northern NSW, Australia, and fed
for a further minimum of 170 days before being slaughtered at
a commercial abattoir (long-fed steers). A subset of steers from
Cohorts 5–7 (n = 690) were slaughtered at a commercial
abattoir directly following exit from the Tullimba feedlot
(short-fed steers).

Three traits, namely, carcass weight (CWT), Meat
Standards Australia (MSA) marbling score (MBL) and
ossification score (OSS) were used in the current study to
validate the ability of SteerSELECT to predict differences in
carcass performance following feedlot finishing. These traits
were selected as they can significantly influence carcass value.
Phenotypes for CWT were collected on the day of slaughter as
hot standard CWT. Phenotypes for MBL and OSS were
collected the day following slaughter on chilled carcasses
by experienced MSA accredited graders. MBL was assessed
at the 12th to 13th rib of the carcass on the exposed rib eye,
using the MSA grading system which ranges from 100 to 1190
in increments of 10 (https://www.mla.com.au/globalassets/
mLa-corporate/marketing-beef-and-lamb/msa_tt_beefinfokit_
jul13_lr.pdf). At the same time, from the same anatomical site,
and by the same MSA grader, an AUSMEAT MBL was also
assessed using the AUSMEAT scoring system, which ranges
from 0 to 9 in increments of 1 (https://solutionstofeedback.
mla.com.au/cattle/chiller-assessment/aus-meat-marbling/). The
AUSMEAT MBL was used only as a parameter to estimate
carcass values in the current study, as described below.Marbling
was assessed according to the AUSMEAT requirements for
chiller assessment when the temperature of the part of the
carcass being assessed was below 12�C. Ossification of the
cartilage within the vertebral spinous processes, a measure of
physiological maturity of the carcass, was assessed across three
areas of the backbone, being the sacral, lumbar and thoracic
vertebrae, by using a scoring system that ranged from 100 to 590
in increments of 10 (https://www.mla.com.au/globalassets/mLa-
corporate/marketing-beef-and-lamb/msa_tt_beefinfokit_jul13_
lr.pdf). Carcass value (CVL) was estimated for all steers in
the validation population by multiplying CWT by (A$5 + A
$1 per kg of CWT for each AUSMEAT MBL). Therefore, a
carcass with an AUSMEAT MBL of 0 was valued at A$5/kg
CWT, whereas a carcass with an AUSMEAT MBL of 3 was
valued at A$8/kg CWT.

Generation of genomic prediction equations
Genotypes for 45 364 autosomal single-nucleotide
polymorphisms (SNPs) were available for all the animals
included in the present study and were used to compute the
genomic relationship matrix (G) following Method 1 of
VanRaden (2008). Initially, a model using data from steers in
both the reference and validation populations (Cohorts 1–7,
defined hereafter as the ‘full model’) was used to obtain the

most reliable set of fixed-effect solutions and genetic
parameter estimates and to assist in the calibration when
back-solving the SNP effects to generate the genomic
prediction equations. The linear model contained the fixed
effects of contemporary group (CG, 77 levels) and age of dam
at birth of calf in years (6 levels, 2–7+ years) and the linear
regression covariate of age at measurement in days. The CG
was defined as a combination of cohort, property of
origin, month of birth, management group and the date the
phenotype was measured. Records without age at
measurement or from steers in a CG with fewer than seven
animals were excluded from analyses. After edits, the number
of records available for analysis was 3285 for the full model,
2763 for the calibration model (Cohorts 1–6) and 522 in the
validation dataset (Cohort 7). Additionally, the random
additive polygenic and residual effects were fitted with
assumed distributions N(0, G�Vg) and N(0, I�Ve)
respectively, where G represents the genomic relationship
matrix described earlier, Vg is the genetic variance matrix,
I is an identity matrix, Ve is the residual variance matrix and�
represents the Kronecker product.

Validation involved the following steps: (1) the above
model (full model) was then re-run using a dataset in which
the phenotypic data from steers in the reference population
(Cohorts 1–6) were retained in the dataset and data from steers
in the validation population (Cohort 7) were set as missing
values (defined hereafter as the ‘calibration model’); (2) the
calibration model was then used to generate gEBVs for steers
in the validation population (Cohort 7) on the basis of their
genomic relationship with steers in the reference population
(Cohorts 1–6); and (3) the SNP effects, back-solved from the
calibration model, were then further calibrated using results
from the full model and the final gEBVs for steers in the
validation population (Cohort 7) were generated on the basis of
SNP effects and their genomic relationship with steers in the
reference population (Cohorts 1–6). In summary, after solving
the calibration model, where animals from the validation
population contributed genotypes but not phenotypes,
the SNP effects were back-solved and used to recompute
the gEBVs for animals in the validation population. The
optimality of these new recomputed gEBVs was assessed
by comparing them with the gEBVs obtained using the full
model, where animals from the validation population
contributed both genotypes and phenotypes. All models
were run using univariate analyses, one trait at a time, by
using the Qxpak5 software (Pérez-Enciso and Misztal 2011).

To validate the ability of Angus SteerSELECT to predict
differences in performance of steers in the validation
population, their raw phenotypic data for CWT, MBL and
OSS were adjusted for fixed effects and covariates by using
solutions from the full model. Traditional and Method LR
(Legarra and Reverter 2018) approaches were used to estimate
accuracy, bias and dispersion of gEBVs generated for steers in
the validation population. Traditional accuracy (ACCT) was
calculated as the correlation between gEBV and the adjusted
phenotype divided by the square root of h2. Following Method
LR approaches (Legarra and Reverter 2018), accuracy
(ACCLR), bias (BiasLR) and dispersion (DispLR) were
calculated by comparing the gEBVs for the validation
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population resulting from the full model with the gEBVs for
the same individuals resulting from the calibration model.
ACCT is grounded in theory. However, it does require
knowledge of adjustment factors and can be affected
dramatically when heritability is poorly estimated, which is
possible when the selection process is inadequately described
in the data and environmental trends are present. In contrast,
the LR method obviates the need for adjustment factors and
has been shown to perform optimally even if the model uses an
incorrect heritability or a hidden trend exists in the data
(Macedo et al. 2020).

Steers in the validation population were then ranked on the
basis of their gEBV for each of the traits CWT, MBL and OSS
and assigned to quartiles, with the 25% of steers predicted to
be the best performers for a given trait being assigned to
quartile one, the next 25% to quartile two, the following 25%
to quartile three and the 25% of steers predicted to be the worst
performers to quartile four. Therefore, steers in quartile one
were predicted to have the highest CWT and MBL and the
lowest OSS. Short-fed (n = 324) and long-fed (n = 191) steers
in the validation population were ranked independently. A
small number of long-fed steers (n = 7) in the validation
population were excluded from ranking because they were
slaughtered at an abattoir different from where their herd mates
were slaughtered. For CVL, the gEBVs for CWT and MBL for
each individual steer in the validation population were
standardised (by dividing values by the standard deviation
of gEBVs from all steers in the validation population), and the
average of these standardised gEBVs for CWT and MBL were
used to rank animals for CVL. Steers were then assigned to
quartiles as described above. Quartile measured phenotype
least-square means (LSMs) were then generated for all traits
by using a linear model, fitting the fixed effects of kill date and
herd where significant, and the significance of differences
among quartiles were analysed using R (R Core Team
2013). Multiple comparisons were evaluated using P-values
adjusted using a Tukey correction.

Results and discussion

Results from the current study demonstrated that
SteerSELECT was able to predict differences in CWT,
MBL and OSS of both short-fed and long-fed Angus steers.
Summary statistics for the traits analysed are presented in
Table 1. The accuracy of CWT, MBL and OSS gEBVs for
steers were 0.72, 0.46 and 0.50 respectively, when computed
using the traditional method and 0.75, 0.72 and 0.73 when
computed using Method LR (Table 2). The larger accuracy
difference observed for MBL and OSS, than for CWT, using
the different methods is not fully understood and will require
further investigation. To demonstrate how differences in
predicted gEBVs translated into differences observed at the
phenotypic level, steers in the validation population were
ranked on their gEBV for CWT, MBL and OSS and
assigned to quartiles representing the predicted top 25% of
performers for each trait in quartile one, followed by the next
25% and so on. The measured phenotype LSMs for steers in
each quartile were then compared for each trait
(Table 3). Short- and long-fed steers ranked in quartile one

for CWT gEBV had carcasses that were, on average, 39 and
34 kg heavier respectively, than those ranked in quartile four.
The mean MBL of short- and long-fed steers ranked in quartile
one for MBL gEBV were 40 and 139 points higher
respectively, than those ranked in quartile four. Genomic
prediction equations were also able to successfully predict
OSS, with steers ranked in quartile one for OSS gEBVs having
mean OSS that were lower, 11 points in short-fed steers and
12 points in long-fed steers, than those of their counterparts
ranked in quartile four. It should be noted that lower OSS
would be targeted by feedlot operators. Differences in LSMs
between quartiles one and four for all traits analysed, namely,
CWT, MBL and OSS, were highly significant (P < 0.001) in
both short-fed and long-fed steers (Table 3). The distribution
of measured phenotype values for steers assigned to each
quartile for CWT, MBL and OSS are shown in Fig. 1.

The concept of using SNP genotypes to predict the genetic
merit of individual animals was first proposed by Meuwissen
et al. (2001). This method allows breeding values to be
estimated for unrelated animals in a population, by using
information previously ignored by traditional pedigree-based

Table 1. Summary statistics including number of records (N), mean,
standard deviation (s.d.), minimum (Min) and maximum (Max) for
slaughter age (Age) and carcass traits, namely, carcass weight (CWT),
marbling score (MBL) and ossification score (OSS), for each analysis
category, namely, full model, calibration model and validation dataset

Category/trait N Mean s.d. Min. Max.

Full model
AGE (days) 3285 735 99 504 990
CWT (kg) 3285 433 66 214 607
MBL (score) 3281 495 123 160 1030
OSS (score) 3280 148 19 100 280

Calibration model
AGE (days) 2763 756 89 506 990
CWT (kg) 2763 445 54 269 572
MBL (score) 2759 505 119 160 1030
OSS (score) 2758 151 17 100 280

Validation dataset
AGE (days) 522 623 72 504 797
CWT (kg) 522 369 83 214 607
MBL (score) 522 439 127 210 880
OSS (score) 522 133 17 100 200

Table2. Traditional (ACCT)andmethodLR(ACCLR)accuracies,bias
(BiasLR, � s.e.) and dispersion (DispLR, � s.e.) of genomic estimated
breeding values for the three carcass traits, namely, carcass weight

(CWT), marbling score (MBL) and ossification score (OSS)

Method traditional Method LR
Trait ACCT ACCLR BiasLR DispLR

CWT (kg) 0.716 0.752 –0.965 ± 0.600 1.283 ± 0.049
MBL (score) 0.461 0.723 0.500 ± 1.365 1.104 ± 0.046
OSS (score) 0.502 0.734 0.189 ± 0.158 1.284 ± 0.052
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methods (Clark et al. 2012). Three key factors have facilitated
the accelerated genetic improvement of livestock through
genomic selection, being (a) development of genomic
selection methodology, (b) the discovery of large numbers
of SNPs that can be used as genetic markers and (c) the
improved cost-effectiveness of genotyping methods
(Meuwissen et al. 2013, 2016). The implementation of low-
density SNP panels to estimate the genetic merit of individual
animals at the commercial level of the beef industry has the
potential to inform decisions at all levels of the commercial
production chain from breeding and management on farm,
through to predicting carcass characteristics for individual
animals at the point of slaughter (Miller 2010).

Successful adoption of genomic selection tools by
commercial beef producers will be driven by the ability of
genomic tests to accurately predict performance in
commercial production environments. Several factors
influence the accuracy of genomic predictions, including
the number of animals represented in the reference
population, the relatedness of animals in the reference and
test populations, the heritability of the trait, the type of
response variable used to estimate accuracies and the
method used to cluster reference population data for
validation (Boddhireddy et al. 2014). Where phenotypic
data are available for animals in the validation population,

adjusted phenotype measures are commonly used as the
response variable to assess gEBV accuracies, whereas,
when phenotypic data are not available, EBV and degressed
EBV data are commonly used (Garrick et al. 2009).

The accuracy of genomic predictions of carcass-trait
performance in beef cattle has been reported previously.
Weber et al. (2012) reported gEBV accuracies of 0.35
(�0.10) for CWT and 0.23 (�0.06) for MBL in Angus
cattle respectively. In more recent studies using Angus
cattle, Bolormaa et al. (2013) reported gEBV accuracies of
0.16–0.18 for CWT and 0.1–0.21 for MBL (depending on the
method used to generate genomic prediction equations) and
Chen et al. (2015) reported gEBV accuracies of 0.35 (�0.02)
for CWT and 0.37 (�0.03) for MBL. In each of these studies, a
multibreed reference population was used to generate genomic
prediction equations and accuracies were computed as the
correlation between gEBVs and measured phenotypes.
When there are limited numbers of animals of a target
breed available for inclusion in the reference population, it
is common to use multibreed reference populations to improve
the accuracy of genomic predictions; however, improvements
in accuracy are expected to be far greater when animals added
to the reference population are of the same breed as those in the
test population (Meuwissen et al. 2016). Using an Angus-
specific reference population with a high EBV accuracy,

Table 3. Mean measured phenotype values for steers assigned to quartiles on the basis of genomic estimated
breeding values (gEBVs) for each of the carcass traits, namely, carcass weight (CWT), ossification score (OSS),

marbling score (MBL) and carcass value (CVL)
Standardised gEBVs for CWT and MBL were averaged to rank steers into quartiles for CVL. Quartile 1 represents
the 25% of steers predicted to be the best performers, on the basis of gEBV, for the trait and each sequential quartile
the next 25% of steers. LSM, least-square mean. Quartile LSMs that differ significantly for a given trait are followed

by different lowercase letters

Quartile Short fed Long fed
Number of
records

Mean
gEBV

LSM Number of
records

Mean
gEBV

LSM

CWT (kg)
1 81 +10.3 325a 48 +18.5 491a
2 81 +0.3 320ab 48 +9.3 473b
3 81 –6.5 309b 48 +2.9 465b
4 81 –19.1 286c 47 –6.4 457b

OSS (score)
1 81 –4.2 121a 47 –3.2 143a
2 81 –1.1 125a 48 -0.6 147a
3 81 +0.9 127ab 48 +1.1 146a
4 81 +3.6 132b 48 +4.0 155b

MBL (score)
1 81 +32.5 396a 48 +44.8 626a
2 81 +5.3 374b 48 +13.2 560ab
3 81 –13.6 370b 48 –4.4 552b
4 81 –38.8 356b 47 –31.6 487c

CVL ($)
1 81 +0.8 2148a 48 +1.4 4258a
2 81 +0.0 2021b 48 +0.7 3864b
3 81 –0.5 1977b 48 +0.1 3780b
4 81 –1.3 1794c 47 –0.6 3546b
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Fig. 1. Distribution of measured phenotype values for steers either short-fed (left panel) or long-fed (right panel) assigned to quartiles
based on genomic estimated breeding values (gEBVs) for each of the carcass traits, carcass weight (CWT), ossification score, marbling
score (MBL) and carcass value (CVL). Standardised gEBVs for CWT and MBL were averaged to rank steers into quartiles for CVL.
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Boddhireddy et al. (2014) reported CWT gEBV accuracies of
0.43 and 0.74 and MBL gEBV accuracies of 0.51 and 0.76
when EBVs or degressed EBVs respectively, were used as
response variables. Accuracies associated with genomic
predictions of carcass-trait performance have also been
reported in other Bos taurus and Bos indicus beef cattle
breeds. Mehrban et al. (2017) reported CWT and MBL
gEBV accuracies of 0.32–0.4 and 0.25 respectively, in
Hanwoo cattle. Similarly, a MBL gEBV accuracy of 0.32
has been reported in Nelore cattle (Magalhães et al. 2019).

The accuracy of CWT and MBL gEBVs generated in the
current study were higher or, as a minimum, comparable with
accuracies reported previously. As described above, this may
be a reflection of (1) the high number of animals in the
reference population, with accompanying high-quality,
industry-relevant phenotypes used to generate genomic
predictions underpinning Angus SteerSELECT and (2) the
relatedness of steers in the reference and validation
populations used in the validation. ACCT and ACCLR were
both ~0.7 for CWT, while ACCT dropped to ~0.5 for MBL and
OSS and ACCLR remained at ~0.7 for these two traits
(Table 2). With a reference population of 4000 animals, a
heritability of 0.3 and an effective population size of 100, a
gEBV accuracy of ~0.45 is expected (Goddard and Hayes
2009). Similarly, with a reference population of 1743
Australian Angus cattle, Bolormaa et al. (2013) reported a
gEBV accuracy of 0.26 averaged across 16 traits. The
estimates of gEBV biases were all within two standard
errors of zero (Table 2). However, there was evidence of
gEBV over-dispersion, with Method-LR dispersion being >1
for the three traits (Table 2). This over-dispersion in the gEBV
could be attributed to the Cohort 7 animals (validation
population) being younger, lighter and with lower MBL and
OSS than for animals in the calibration population
(Table 1), and hence, prediction equations being based on
heavier animals. Further research is needed to fully ascertain
the reason for this over-dispersion.

The heritability of traits influences the ability to predict
genetic differences for those traits. In the current study, the
genomic-based heritability of CWT, MBL and OSS was
estimated at 0.53 � 0.07, 0.42 � 0.03 and 0.33 � 0.05
respectively (Table 4). These estimates are higher than the
heritability estimates of 0.37, 0.28 and 0.22 previously
reported for CWT, MBL and OSS in Angus cattle
(Boddhireddy et al. 2014; Jeyaruban et al. 2017), and also
the results from the TransTasman Angus Cattle Evaluation
(TACE), which estimated the heritability of CWT and

intramuscular fat % (measured on carcasses) to be 0.41 and
0.32 respectively (https://www.angusaustralia.com.au/tace/
resources/heritability-of-traits/).

For commercial beef producers to adopt genomic selection
tools as part of routine management, the cost versus benefit of
using such tools must be clearly demonstrated. To demonstrate
the potential economic benefits for feedlot operators using
SteerSELECT, the CVL of steers in the validation population
was estimated. A CVL gEBV was calculated, by combining
gEBVs for CWT and MBL, and steers were ranked into
quartiles on the basis of their CVL gEBV, with the 25% of
steers predicted to have the highest CVL being assigned to
quartile one, the next 25% of steers to quartile two, and so on.
The LSM of CVL for steers in quartiles one to four were A
$2148, A$2021, A$1977 and A$1797 for short-fed steers and
A$4258, A$3864, A$3780 and A$3546 for long-fed steers
respectively, representing a difference in CVL between
quartiles one and four of A$351 in short-fed steers and A
$712 in long-fed steers. The distribution of estimated CVL for
steers assigned to each quartile is shown in Fig. 1. Costs
associated with the use of Angus SteerSELECT include labour
costs to collect DNA samples from individual steers,
genotyping costs and analysis costs. Clearly, the costs and
benefits associated with identifying steers suitable for feedlot
finishing and the most appropriate finishing path (e.g. short-fed
or long-fed) will vary among those in the beef supply chain
including feedlot operators. This will be specific to each
production system, requiring specific cost–benefit analyses
to be undertaken for each supply chain.

Use of genomic-based selection tools will provide beef
cattle producers an opportunity to make genetic gains in novel,
hard-to-measure traits such as feed efficiency and disease
resistance (Miller 2010). We intend to include genomic
predictions for a total of nine routinely measured and hard-
to-measure traits in the final Angus SteerSELECT genomic
selection tool, including traits related to growth (yearling
weight), efficiency (average daily gain, dry matter intake)
carcass characteristics (CWT, MBL, OSS, eye-muscle area,
rib fat) and health (ImmuneDEX, Reverter et al. 2021). We are
also developing weighted selection indexes based on
combinations of relevant trait gEBVs, which are aimed at
predicting the suitability of steers for different finishing
protocols including short-fed, long-fed and grass-fed, with
index values reported as part of Angus SteerSELECT. As
the ability of Angus SteerSELECT to predict differences in
performance of steers that are not purebred Angus, or that do
not have a high Angus content, has not been evaluated,
inclusion of a breed verification step in the analytical
pipeline that generates predictions for the Angus
SteerSELECT product is planned. This will allow DNA
samples submitted for testing from crossbred animals or
animals of a breed other than Angus to be identified, and
predictions for these animals flagged as potentially of low
accuracy.

Production losses due to disease are a major economic cost
for the beef cattle feedlot industry in Australia (Lane et al.
2015). The Australian feedlot industry is actively investing
in strategies to improve the health and welfare of cattle in
their production systems and reduce their use of antibiotics to

Table 4. Estimates (�s.e.) of genetic variance (Vg) and heritability
(h2) for the three carcass traits, namely, carcass weight (CWT),
marbling score (MBL) and ossification score (OSS), from the full

and calibration models

Trait Full model Calibration model
Vg h2 Vg h2

CWT (kg) 521 ± 96 0.529 ± 0.072 520 ± 98 0.516 ± 0.073
MBL (score) 4201 ± 552 0.422 ± 0.031 4693 ± 396 0.442 ± 0.047
OSS (score) 62 ± 10 0.330 ± 0.049 62 ± 11 0.329 ± 0.054
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treat disease (Hine et al. 2019). Genomic selection tools
have the potential to identify animals that are more resistant
or susceptible to disease (Raszek et al. 2016); however,
phenotypic data of sufficient quality and quantity to
underpin the development of such tools has been lacking.
We have developed methodology to assess immune
competence, a proxy for general disease resistance, in beef
cattle (Hine et al. 2019), and have used phenotypes to generate
an index, termed ‘ImmuneDEX’, which can be used as a tool
for the genetic improvement of immune competence in beef
cattle (Reverter et al. 2021). Uniquely, genomic predictions
for ImmuneDEX will be included as part of SteerSELECT,
providing feedlot operators with information on the predicted
ability of individual animals to resist disease for the first time.

Conclusions

Results from the present study suggest that the genomic
predictions underpinning SteerSELECT can predict
differences in CWT, MBL, OSS and CVL in both short-fed
and long-fed Angus steers finished under commercial
Australian feedlot conditions. This provides confidence that
the commercialised Angus SteerSELECT product, based on a
similar but larger reference population, will be able to
accurately predict differences in performance, in terms of
growth, efficiency, health and carcass characteristics, of
Australian Angus steers. This will, in turn, provide
businesses in the beef supply chain (e.g. breeders,
backgrounders, feedlot operators, abattoirs and beef brand
owners) with additional information on Angus animals to
inform selection, purchasing and management decisions.
Angus SteerSELECT will be especially beneficial to
integrated beef supply chains that have the ability to target
steers to different finishing paths, such as short-fed versus
long-fed feeding programs, and/or with different brand
specifications such as moderate versus high marbling
requirements. Future studies will aim to validate the ability
of Angus SteerSELECT to predict differences in performance
of steers for additional traits (e.g. feed intake and immune
competence), which will be included in the final product using
the validation population described here. Studies will also be
undertaken to assess the effectiveness of Angus SteerSELECT
to predict differences in feedlot and carcass performance in
commercial Angus steers that are independent of the ASBP
and the Angus Australia reference population.
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