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Abstract
Context. There has been a lot of interest in recent years in developing estimated breeding values (EBVs) to reduce

methane emissions from the livestock sector. However, while a major limitation is the availability of high-quality
methane phenotypes measured on individual animals required to develop these EBVs, it has been recognised that
selecting for improved efficiency of milk production, longevity, feed efficiency and fertility may be an effective strategy
to genetically reduce methane emissions in dairy cows.

Aim. Applying carbon dioxide equivalents (CO2-eq) weights to these EBVs, we hypothesise that it is possible to
develop a genetic tool to reduce greenhouse-gas emissions (GHG).

Methods.We calculated the effect of an EBV unit change in each trait in the Balanced Performance Index on CO2-eq
emissions per cow per year. The estimated environmental weights were used to calculate a prototype index of CO2-eq
emissions. The final set of EBVs selected for inclusion in the GHG subindex were milk volume, fat yield and protein
yield, survival and feed saved, as these traits had an independent effect on emissions. Feed saved is the Australian feed
efficiency trait. A further modification was to include a direct methane trait in the GHG subindex, which is a more direct
genomic evaluation of methane estimated from measured methane data, calculated as the difference between actual and
predicted emissions, for example, a residual methane EBV.

Key results. The accuracy of the GHG subindex (excluding residual methane EBV) is ~0.50, calculated as the
correlation between the index and gross methane (using 3-day mean gross methane phenotypes corrected for fixed
effects, such as batch and parity and adjusting for the heritability). The addition of the residual methane EBV had a
minimal effect with a correlation of 0.99 between the indexes. This was likely to be due to limited availability of
methane phenotypes, resulting in residual methane EBVs with low reliabilities.

Conclusions.We expect that as more methane data becomes available and the accuracy of the residual methane trait
increases, the two GHG subindexes will become differentiated. When the GHG subindex estimates are applied to bull
EBVs, it can be seen that selecting for bulls that are low emitters of GHG can be achieved with a small compromise in
the BPI of ~20 BPI units (standard deviation of BPI = 100).

Implications. Therefore, selection for more sustainable dairy cattle, both economic and environmental, may be
promptly implemented until sufficient data are collected on methane.
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Introduction

It is recognised that within dairy systems, the largest source of
greenhouse gas (GHG) emissions is from enteric fermentation
and methane (CH4) production (g/day). Over 30 years
(between 1980 and 2010), Moate et al. (2016) estimated
that production of enteric CH4 has been almost static
(185 000 t in 1980 versus 182 000 t in 2010). At the same
time, milk production has increased, so that the intensity of
CH4 emissions (i.e. emissions per unit of product, in this case,
milk) has declined considerably by 40%, from ~33.6 g CH4/kg

milk to 19.9 g CH4/kg milk. Since milk production traits are a
large part of the breeding goal, it follows that the reduction in
GHG has been, in part, the result of genetic improvement in
efficiency and dilution of emissions per litre of milk produced.

The Australian national breeding objective, known as the
Balanced Performance Index (BPI), includes traits that
contribute to cow profitability, farmer preferences and
desired gains (Byrne et al. 2016). The BPI encompasses
biological traits associated with milk production, longevity,
fertility, feed efficiency and health. Feed-efficiency breeding
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values, known as feed saved, include genomic breeding values
for residual feed intake and breeding values for maintenance
requirements based on predicted cow bodyweight (Pryce et al.
2015). Thus, by selecting for production traits and feed saved
simultaneously, it is anticipated that gross efficiency will
improve in Australian dairy cows (Byrne et al. 2016).

There has been a lot of interest in recent years in developing
estimated breeding values (EBVs) to reduce GHG from
the livestock sector. However, a major limitation has been
the quantity of high-quality CH4 phenotypes measured on
individual cows required to develop these EBVs. Currently,
most published reliabilities are <10% (Manzanilla-Pech et al.
2021), which is insufficient for implementation of genomic
prediction. However, it has been recognised that selecting for
improved efficiency of milk production, longevity and fertility
has had a beneficial effect on GHG emissions (Løvendahl et al.
2018). Consequently, it might be possible to develop an index
that includes the contribution of these traits to GHG emissions,
either separately, or in addition to CH4 emissions. Breeders
with an interest in selecting for reduced GHG emissions,
without greatly affecting profitability, can select for high-
BPI and low-GHG emitters.

An approach that could be suitable is to estimate the
increment in CO2-eq per unit change in EBVs that are
current selection objectives, while accounting for interactions
among traits, thereby calculating trait-specific environmental
coefficients that are independent, such as those in Amer et al.
(2018) and Richardson et al. (2021a) and that, for selection index
purposes, are superior to non-independent coefficients, such
as those calculated by Bell et al. (2013) and Pryce and Bell
(2017).

The aim of this research was to (1) develop a GHG
subindex using the gross CO2-eq values derived by
Richardson et al. (2021a) as subindex weights for the EBVs
most strongly associated with GHG emissions (milk, fat and
protein yield, longevity, and feed saved), (2) modify the
GHG subindex to include residual CH4 EBVs, as defined
by Richardson et al. (2021b), from measured CH4 data
phenotypically corrected for energy-corrected milk and (3)
validate the GHG subindex with CH4 phenotypes corrected for
fixed effects. Finally, we explored the effect of current
selection objectives on CH4 by regressing the derived
subindexes for GHG on BPI and Health Weighted Index
(HWI).

Materials and methods

Previously calculated CH4 coefficients (kg CO2-eq/unit
change in trait) were used as weights and applied to EBVs
commonly used in selection and most strongly associated with
emissions to derive two possible subindexes aimed to rank the
environmental impact of individual animal on the basis of their
genetic merit. The first index includes traits that are currently
included in the national breeding objective and known to
have a direct environmental impact, including production
traits, survival and feed efficiency. The second includes
these index traits as well as a direct CH4 trait. The two
subindexes were correlated with current national breeding
indexes (BPI and HWI), as well as additional traits of interest.

Australian national breeding objective
Currently, there are two main indexes used for ranking dairy
cattle in Australia. The BPI includes traits pertaining to
production (milk, fat, protein), fertility, survival, health and
feed efficiency. The HWI, which was developed using the
same traits as in the BPI, places additional emphasis on traits
related to health and efficiency, such as fertility and feed
saved. Details of the index development are given in Byrne
et al. (2016). DataGene (Melbourne, Vic., Australia)
calculates the BPI and HWI routinely for all cows and bulls
included in national genetic evaluations.

Phenotypic and genetic cow data
In total, 1712 individual cow CH4 measurements were
obtained from 464 cows measured over a 5-day period from
12 experimental batches across 5 years from 2013 to 2017.
Cows were located at the Ellinbank SmartFarm (Melbourne,
Vic., Australia) and milked twice per day. Measurements for
CH4 (g/day) were performed using the SF6 tracer method
previously described by Deighton et al. (2014). Records for
CH4 were averaged to obtain one observation per animal to
account for day-to-day variation (Moate et al. 2016). Animals
were between 68 and 187 days in milk at the start of
measurement and across parities 1–9. Genotypes for the 464
cows used in this study were provided by DataGene Ltd. After
editing by excluding genotype calls with a GenTrain score
<0.6 using the methods described by Erbe et al. (2012), 47 162
single nucleotide polymorphism (SNP) markers were available
for genomic analysis. EBVs for the 464 animals used in this
study were estimated as part of the routine genetic evaluation
service of DataGene Ltd and included milk, fat, protein,
survival and feed saved, which are traits directly used in
GHG subindex development.

Genetic bull data
Genotypes for the 3412 registered Holstein bulls used in this
study were provided by DataGene Ltd, with processing and
genotyping methods being consistent with the cow dataset.
Bulls were born between 2010 and 2015. The EBVs used in
this analysis included milk volume, milk fat, milk protein,
survival and feed saved, as well as other traits of interest such
as heat tolerance and liveweight and were accessed from the
April 2020 official genetic evaluation run.

Residual CH4 breeding value
Richardson et al. (2021b) investigated nine definitions of
residual CH4 traits and concluded that CH4 production
corrected for energy-corrected milk is an appropriate selection
candidate to reduce environmental impact without severely
affecting other traits, such as production, health and fertility.
Using this definition of residual CH4 EBVs, we calculated
genomic breeding values for bulls (or cows) that were not part
of the reference dataset, by multiplying the vector of SNP
effects with the genotype matrix of bulls. These SNP effects
were derived using a process to back-calculate SNP effects from
direct genomic values (DGVs) of cows in the reference
population. In brief, using DGVs of CH4 production corrected
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for energy-corrected milk of 464 Ellinbank cow reference
population, 41 276 SNP effects were estimated as:

b̂ ¼ mþ Z0ðZZ0Þ�1ĝ;

where Z is the genotype matrix (464 individuals · 41276
SNP), and ĝ a vector of descaled DGVs with a mean of
0 estimated using genomic best linear unbiased prediction
(VanRaden 2008). The prediction equations of SNP effects
were then used to predict residual CH4 DGVs of the
3412 Holstein bulls.

Methane coefficients
Methane coefficients were previously calculated by
Richardson et al. (2021a) on the basis of the approach used
by Amer et al. (2018) and adapted to calculate the effect of a
unit change in milk, fat, protein, feed saved, and survival traits
on CO2-eq emissions per cow and per kilogram of protein
equivalents. Protein equivalents are a weighted aggregate of
the product outputs from milk protein, milk fat, and milk
volume weighted on the component value ratio relative to
protein. Briefly, this method estimates the change in total
emissions and product output caused by a 1 unit change in
each index trait, resulting from either a direct emissions trait
(CH4 yield), changes in herd structure (fewer replacements), or
the dilution effect of higher yields (milk production) and
proliferation (more offspring/dam). The traits used in the
current study were determined to have an independent
effect on emissions, with the addition of fertility
(Richardson et al. 2021a). However, as fertility is a primary
reason for culling, the environmental impact of fertility is
largely accounted for by the survival EBV, with minimal
additional effects applying to extended lactations observed
in seasonal calving systems (Workie et al. 2019; Richardson
et al. 2021a). Therefore, only the survival CH4 coefficient is
considered in the index. The model was used in the current
study to dynamically represent an Australian dairy herd and
assess effects of changes in traits. The effects of a unit change
of a trait on GHG emissions are shown in Table 1. For
example, a unit change in milk protein is estimated to be
associated with a GHG emission of 1.97 kg of CO2-eq (3.70 kg
DM/kg protein yield · 0.532 kg CO2eq / kg DM = 1.97 kg
CO2eq/kg protein yield).

GHG index
Indexes for CO2-eq emissions per cow per year were calculated
by multiplying the EBVs of each trait in the breeding objective
by the CH4 coefficient (i.e. effect of a single unit change of the
trait on CO2-eq emissions). The sum of this is the total CO2-eq
index. EBVs selected for this study included milk, fat, protein,
feed saved and survival (Amer et al. 2018; Richardson et al.
2021a). Gross CH4 coefficients were applied to trait EBVs to
calculate the GHG index as follows:

GHGindex ¼
Xi

i¼1

wi�EBVi

where wi is the CH4 coefficient (gross or intensity) of the
ith trait and EBVi is the estimated breeding value of the ith trait
(milk, fat, protein, feed saved or fertility).

GHG index with residual CH4 production
An additional index was developed that extends the GHG
index described above through the addition of the EBV of
residual CH4 and was calculated as follows:

GHGþ
index ¼ GHGindex þ EBVRMP

where EBVRMP is the residual CH4 EBV and GHGindex is
described above.

Correlations
The GHG indexes were correlated with the Australian national
selection indexes, as well as with index traits currently
estimated through the national genetic evaluation services
(DataGene Ltd). Correlations were estimated using the cor.
test() function in R.4.0.4 statistical programming (R Core
Team 2013).

Validation of GHG index using CH4 phenotypes
The GHGindex subindex was validated using a 12-fold cross-
validation, where the correlation between GHGindex and CH4

phenotypes for each experimental batch was independently
estimated, that is, batch by batch. EBVs for index traits were
provided by DataGene Ltd for milk, fat, protein, survival and
feed saved on the 464 Ellinbank cows used in developing the
residual CH4 trait. For the 464 cows, first GHGindex was
calculated and then the values were correlated with SF6
CH4 phenotypes. As described by Su et al. (2012), to
calculate the predicted accuracies of the true breeding
values, instead of the EBVs, the correlations between the
GHG subindex and SF6 CH4 phenotypes was divided by the
square root of the heritability of residual CH4 production
(h2 = 0.21; Richardson et al. 2021b).

The size of the datasetwas insufficient to conduct a validation
analysis for the GHG+

index. This is because all data on 464
Ellinbank cows were required for development of the
genomic prediction equation to estimate EBVRMP, so an
independent dataset was not available.

Results

GHG index values

The GHGindex subindex was applied to 3412 Holstein bulls and
had a mean value of 38.22 kg CO2-eq, with a standard

Table 1. Responses in carbon dioxide equivalents (CO2-eq) per unit
change of key traits under selection

Values are means and standard deviations (s) of breeding values in the
bull population

Parameter Mean s Response
(kg CO2-eq/unit
change of trait)A

Milk protein (kg) 12.94 7.30 1.97
Milk fat (kg) 10.21 11.30 3.19
Milk volume (L) 319.23 340.91 0.04
Survival (%) 104.01 3.32 –10.19
Feed saved (kg) –3.12 75.78 –0.53

ARichardson et al. (2021a).
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deviation of 76.39. When residual CH4 was incorporated into
the subindex, GHG+

index, the standard deviation was 76.62
with a mean of 37.65 kg CO2-eq.

Correlation between indexes

Correlations between the GHG subindexes, BPI and HWI are
presented in Table 2. The two GHG-based indexes, with and
without the RMP EBV, were highly correlated (0.99). The BPI
was uncorrelated with the GHGindex subindex and GHG+

index

subindex, with correlations of close to zero at –0.03 and –0.02
respectively. Favourable correlations were estimated between
HWI and both GHG-based subindexes, with correlations of
–0.35 with GHGindex and –0.36 with GHG+

index. These trends
were consistent within the top 300 BPI bulls, where the
average BPI of the top 30 BPI bulls was 333. Considering
only bulls whose GHG index value was below zero, the
average BPI for the top 30 BPI bulls decreased to 312,
representing a low 21-point difference (Fig. 1).

Correlation with index traits

Correlations between the GHG indexes and selected EBVs are
presented in Table 2. The GHGindex and GHG

+
index subindexes

had strong favourable correlations to feed saved (–0.71 and
–0.70 respectively), fertility (–0.52 and –0.51) and survival
(–0.43 and –0.42), as well as to heat tolerance (–0.45 and
–0.46). Low to moderate favourable correlations were
observed between the indexes and mastitis resistance (–0.29
and –0.28) and RMP (0.01 and 0.07). The traits with the largest
unfavourable correlation with both indexes were fat (0.66),
protein (0.57) and liveweight (0.56). Milk, milking
temperament, likability and overall type had low to
moderately unfavourable correlations of 0.30, 0.17, 0.16
and 0.14 respectively.

Validation

When GHG index values were correlated with SF6 CH4 data
(Fig. 2, Table 2), the average correlation of the 12 validation
batches was 0.23 (ranging 0.07–0.41). This gives the GHGindex

subindex an accuracy of ~0.50, assuming a moderate
heritability of 0.21 (Richardson et al. 2021b).

Discussion

We have developed two GHG-based subindexes that can be
used to select for reduced emissions. The advantage of our
approach is that it utilises the EBVs of traits currently
estimated through the national genetic evaluation service
and therefore does not require a direct CH4 trait. Although
we apply the method to Holsteins in the present paper, it can be
adapted to derive weights for other dairy breeds, such as
Jerseys and crossbreds, although the method should be
validated in these breeds before implementation. This
approach enables emission mitigation strategies through

Table 2. Correlation between GHG indexes and BPI, HWI and other
EBVs within the population of 3412 registered Holstein bulls

Trait GHG index s.e. GHG index + RMP s.e.

Favourable
BPI –0.02 0.02 –0.02 0.02
HWI –0.36 0.02 –0.33 0.02
RMP (kg CH4) 0.01 0.02 0.08 0.02
Feed saved (kg DM) –0.71 0.01 –0.70 0.01
Fertility (%) –0.52 0.02 –0.51 0.02
Calving ease –0.13 0.02 –0.13 0.02
Gestation length –0.04 0.02 –0.04 0.02
Survival (%) –0.43 0.01 –0.42 0.01
Mastitis resistance (%) –0.29 0.02 –0.28 0.02
SCC –0.43 0.02 –0.28 0.02
Heat tolerance –0.45 0.02 –0.46 0.02

Unfavourable
Milk (L) 0.30 0.02 0.31 0.02
Protein (kg) 0.57 0.02 0.57 0.02
Fat (kg) 0.66 0.01 0.66 0.01
Liveweight (kg) 0.56 0.02 0.56 0.02
Milking speed 0.07 0.02 0.06 0.02
Milking temperament 0.17 0.02 0.17 0.02
Likability 0.16 0.02 0.15 0.02
Overall type 0.14 0.02 0.13 0.02
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Fig. 1. GHGindex subindex scores among the top 300 BPI bulls. The solid
vertical line is the average BPI (333) in the top 30 bulls and the dotted
vertical line in the average BPI (312) for the top 30 BPI bulls with low
GHG index values.

650

550

450

350

250

150

50

−50
−250 −200 −150 −100 −50 0 50 150 250200100

GHGindex (CO2-eq/cow)

M
et

ha
ne

 p
ro

du
ct

io
n 

(g
/d

ay
)

Fig. 2. Relationship between GHGindex and SF6 methane phenotypes,
corrected for days in milk, batch-year and parity, in 464 cows located at
the Ellinbank SmartFarm (Melbourne, Vic., Australia).
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genetics to be implemented immediately, with the option of
including a CH4 trait when available. Our results showed that
there is little to no advantage in including the current residual
CH4 trait, although this is expected to change with a higher-
reliability residual CH4 trait. It is expected that a residual CH4

trait may be available in the future (Manzanilla-Pech et al.
2021; Richardson et al. 2021b). However, this is still a
significant challenge, as CH4 phenotypes are expensive and
laborious to measure and combining international datasets is
challenging, with multiple measuring apparatus and techniques
being used in data CH4 collection internationally, typically on a
single breed (University of Guelph 2016).

Relationship between GHG indexes

The high correlation between the two calculated subindexes,
GHGindex and GHG+

index, showed that the RMP trait has a
small effect on the index. This was expected, as the RMP trait
has a low accuracy and a standard deviation of 5.0, whereas,
for example, the standard deviation of the survival component
of the GHG subindex was 28.36. However, as the RMP EBVs
become more accurate, it is expected that the effect of the RMP
traits within the index will increase proportional to the
standard deviation and that the two GHG subindexes will
further differentiate. We assumed that because the GHG
subindexes and residual CH4 EBV are both measured in
CO2-eq and that the index components can be added
together to calculate GHGindex

+. However, further analysis
is required to optimise the residual CH4 EBVs within
GHGindex

+. Conceptually, the inclusion of RMP traits in the
subindex is important (Knapp et al. 2014). The GHG subindex
index will result in more environmentally efficient animals;
however, selection on a direct CH4 trait will capture the
variation in CH4 that exists between animals, resulting in a
further reduction in CH4 emissions. Further improvements to
the GHG index and an increased availability of CH4

phenotypes may help increase the accuracy of the index,
and thereby the proportion of between-animal genetic
variance captured by the index that can be utilised for
selection. Although the effect of the RMP impact is
minimal, these results have shown that we can use genetic
selection to begin reducing emissions immediately. The
GHGindex method offers an option to include a
sustainability component in the national breeding objective,
with minimal compromises to advances in BPI and profit. In
dairy systems where it is not possible to obtain accurate CH4

phenotypes, the GHGindex offers a valuable alternative that can
be implemented simply and immediately, as it utilises EBVs
currently available through the national genetic services.

Relationships betweenGHG indexes and current indexes

The relationships between the GHG indexes (GHGindex and
GHG+

index) and the current national selection indexes (BPI and
HWI) are favourable. The strong favourable correlations
between HWI and GHG subindexes support the hypothesis
that selection for improved efficiency and survival is a viable
mitigation option, as previous studies have identified (Wall
et al. 2010; Pryce and Haile-Mariam 2020). Although the HWI

and BPI are strongly correlated (0.93), some re-ranking does
occur between the indexes. The HWI places greater selection
emphasis on health and functional traits, such as 5% on feed
saved and ~40% on fertility and survival. Comparatively,
the relative index weight in BPI for feed saved, and fertility
and survival are 2.5% and 30% respectively (DataGene). The
difference in comparative weighting also explains the
differences in correlation with the GHG subindexes. Both
the GHG subindexes and HWI place additional weight on
survival and efficiency traits. However, the GHG subindexes
also penalise higher production (milk, fat and protein).
Selection on the HWI would results in favourable gains in
the GHG subindexes. For the BPI, the correlations with the
GHG subindexes were negligible (–0.02). However, in the top
50 bulls, 10 ranked negative on the GHG subindexes and a
considerable number of bulls within the top 300 rank negative
or close to 0 (Fig. 1). When considering the HWI, the GHG
subindexes have a favourable negative correlation (–0.36)
meaning that the higher the HWI, the less GHGs are
emitted. As expected, on the basis of the favourable
correlation between HWI and GHG, all but one of the top
HWI Holstein bulls (within the top 300 BPI bulls) had a
negative GHG subindex value, with one bull that was
positive having a value very close to zero. This presents an
opportunity to select for bulls that are profitable and also low
GHG emitters.

Correlations between GHG indexes and index traits

As expected, the GHG subindexes are strongly correlated with
the traits used in the index development, as well as with traits
independent of index development that are suspected to have
mitigation properties. Fertility was not included in the GHG
subindexes as the CH4 coefficient previously calculated only
accounted for a portion of the effects of fertility, with all
effects related to a reduction in replacements being accounted
for through the survival EBV (Richardson et al. 2021a).
However, there is a strong favourable effect between the
GHG subindexes and fertility. This large favourable effect
is also seen with heat tolerance (Nguyen et al. 2017), a trait
defined as a rate of decline in milk, fat and protein yields per
unit increase in temperature–humidity index. Heat tolerance is
not included in the BPI and has a strong negative correlation
with production traits, similar to the GHG subindexes. This
suggests that selection only for a lower GHG subindex would
result in decreases in production. However, by combining the
GHG subindex with HWI or BPI, we can ensure that both
genetic gain in profitable traits and decreases in gross
emissions are achieved. Historically, unfavourable
correlations among traits have been overcome by
simultaneous inclusion in selection indexes, such as with fat
and protein yield, although genetic gain is seen at a slower rate
(Miglior et al. 2005). Type and production traits are also
unfavourably correlated with the GHG subindexes, whereas
more functional traits such as calving ease and mastitis
resistance are favourably correlated. This suggests that
transitioning some selection emphasis from type and
production traits is favourable for environmental impact,
and as Miglior et al. (2017) suggested, the selection for
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robust animals is vital for the future sustainability of the dairy
industry.

Validation

The validation methods of this research were limited by the
small dataset size, as only the GHGindex subindex could be
compared with the SF6 CH4 data. However, as the GHGindex

and GHG+
index subindexes were highly related, it is expected

that a similar accuracy may be obtained for the GHG+
index

subindex. With an increase in dataset size to where a cross-
validation may be conducted without jeopardising the
accuracy of the RMP EBV or validity of the analysis, a
validation may be also conducted on the GHG+

index

subindex with a higher confidence. The reliability of the
GHGindex is sufficient for including the subindex in
selection strategies. However, the accuracy of the GHGindex

to select for direct CH4 is low. This is primarily due to the
small dataset, as obtaining accurate CH4 phenotypes on a large
number of individual animals is challenging. In Australia, CH4

phenotypes are currently measured on a reference population
of 464 females, which is considerably lower than the suggested
5000-cow female reference population required for a
moderately heritable trait to reach the same level of
reliability (0.25) as the GHG subindex (González-Recio
et al. 2014).

Practical decision-making

The GHG subindex may be used in practice to allow farmers to
make environmentally conscious breeding decisions. The
developed GHGindex subindex has many opportunities for
implementation, with minimal compromise to profit
(Fig. 1). Within the BPI, the GHGindex subindex could be
included as an additional subindex and, although HWI is
already favourably correlated with the GHG subindexes,
inclusion of the GHGindex subindex in HWI would put
additional weight on traits based on their environmental
impact (i.e. favouring longevity and efficiency).
Additionally, these weights may be used in culling
decisions to differentiate between two animals of similar
genetic merit, as the higher emitter may be removed from
the herd or breeding stock. These GHGindex subindex values
may be used on a magnitude or range basis. For example, the
GHGindex subindex may be used to sort cows into high-,
medium-, low- and negative-emitter ranges. While using
only bulls or animals with negative GHGindex subindex
values may not be possible at this time as this would result
in increased inbreeding, farmers could use this range ranking
system as a way of selecting for lower-emitting cows, leading
towards a more environmentally conscious industry.

Future index weights

The traits within the GHG based subindexes are weighted
based on their environmental impact. This weighting scheme is
an alternative to the traditional economic index, which weights
traits on the basis of profit. Alternative weighting options have
been suggested, including social impact and farmer preference
(Nielsen and Amer 2007). This has been implemented in the
current Australian Breeding Objective through the HWI and

previously through the (now discontinued) Type Weighted
Index (Byrne et al. 2016). Using survey approaches described
by Martin-Collado et al. (2015), weights were assigned to
traits on the basis of the priority and preferences of farmers,
which grouped farmers into three sections (profit based, health
based, and type based). Multi-source weighting allows the
weights within an index to be developed on the basis of a
subset of conditions. Those conditions may be economic,
social, environmental or preference based, with the final
weight applied to a trait being an aggregate of these
weights. This should be considered when including the
GHGindex subindex in the national selection indexes (BPI
and HWI) and not just as a supplementary selection
decision tool. The GHG subindexes offer an additional
option for weighting traits, on the basis of environmental
impact. In theory, the GHG indexes are effectively
weighting the traits twice. First, on the basis of economic
analysis, and second, on the basis of environmental impact.
However, in practice we are adjusting the index weight so that
it is no longer purely economic based, but instead an aggregate
weight of environmental and economic factors. This method
may be especially useful to develop breeding strategies for
traits with low economic values in breeds where expensive
and laborious phenotypes, such as CH4, are not currently
collected. Ideally, further breed-specific validations should
be conducted, but as the majority of data has been collected
on Holsteins, validation in other breeds is not possible at this
time. As interest to include traits with low direct economic
value in national selection indexes grows, further investigation
is required to determine optimal inclusion methods.

Conclusions

This research has proposed a GHG subindex using EBVs
currently estimated through the national genetic service and
previously derived index weights that describe the change in
CO2-eq associated with a unit change in each trait. The final set
of EBVs selected for inclusion in the GHG subindex were
milk, fat and protein yield, survival and feed saved as these
traits had an independent effect on emissions. A further
modification was to include a direct CH4 trait in the GHG
subindex, which was a RMP EBV. The two GHG subindexes
were highly correlated, suggesting the RMP had a minimal
impact on the GHG index, which was expected due to the low
accuracy of the RMP EBV. The GHG subindexes had high
reliabilities; however, the accuracy of the subindexes to predict
CH4 was reasonably low. The correlations between the GHG
subindexes and current national selection indexes (HWI and
BPI) suggest that selection strategies using HWI are expected
to reduce emissions, whereas selection on BPI results in
negligible changes in either GHG subindex. Type and
production traits were unfavourably correlated with the
GHG based subindexes, whereas traits associated with
longevity, health, fertility and efficiency were favourable
correlated. The GHG subindex may be included in the
national selection index or used independently in practice
by farmers to make environmentally conscious breeding and
culling decisions, with minimal compromise to profit.
Therefore, as the GHG subindex does not necessarily
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require a direct CH4 trait to lower the environmental impact
of dairy cattle, selection for more sustainable dairy cattle
may be promptly implemented until sufficient data are
collected on CH4.
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