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OPEN ACCESS 

ABSTRACT 

Extensive antimicrobial usage in animal farming plays a prominent role in the antimicrobial resistance 
(AMR) crisis and is repeatedly highlighted as an area needing development under the ‘One Health’ 
approach. Alternative therapies such as microbiome products can be used as prophylaxis to help 
avoid infectious disease. However, a limited number of studies have focused on AMR-targeted 
microbiome products. We conducted this systematic review by using PRISMA guidelines to screen 
for literature that have evaluated food animals’ health when administrated with microbiome 
products targeting antimicrobial resistance (AMR) or antibiotic-resistant genes (ARGs). We 
searched and examined studies from SCOPUS, Web of Science, Embase, and Science direct 
databases for studies published up to November 2021, restricted to the English language. The 
findings of this review showed that microbiome products have a promising capability to tackle 
specific AMR/ARGs coupled with animal’s health and productivity improvement. Furthermore, our 
study showed that probiotics were the most favourable tested microbiome products, with the most 
targeted resistance being to tetracycline, macrolides, and beta-lactams. While microbiome products 
are promising alternatives to antibiotic prophylactics, there is a dearth of studies investigating their 
efficacy in targeting AMR. Thus, it is highly recommended to further investigate, develop, and 
improve the microbiome, to better understand their utility and circumvent their limitations. 

Keywords: AMR, antimicrobials, ARG, bacteria, food animals, microbiome, microbiome products, 
probiotics. 

Introduction 

Antimicrobials are used extensively as treatments, prophylactics, and growth promoters in 
large-scale animal-farming systems (Kimera et al. 2020). According to the United Nations 
Report (2019), the world population is estimated to be 9.7 billion by 2050 (United Nations 
PD 2019). This increased population will proliferate the demand for food-producing 
animals and their products. To fulfil this demand, several countries are shifting to 
intensive livestock production systems that use antimicrobial (AM) treatments to 
maintain animal health and improve growth and productivity (Kober et al. 2022). 
Accordingly, the global consumption of AMs used for food animals is predicted to 
increase by up to 67%, from 63 151 Mg in 2010 to 105 596 Mg in 2030 (Xiong et al. 
2018). This dependence on antimicrobials has contributed to the increase in AM 
resistance (AMR), which was predicted by Sir Alexander Fleming, who introduced the 
first antibiotic, during his Nobel prize speech in 1945 (Diarra et al. 2021). AMR is a 
natural process and a common defence mechanism in bacteria. It can lead to difficulties 
in treatment and increases healthcare costs, especially in the case of multidrug 
resistance. In 2018, it was estimated that the numbers of deaths from AMR were about 
700 000 per year (Seong et al. 2021). An additional consequence of the long-lasting 
practice of subtherapeutic antibiotic doses in food animals is the selection of antibiotic-
resistant bacteria (ARB), which in some cases may increase the mutation rate (Revitt-Mills 
and Robinson 2020; Zalewska et al. 2021). ARB can transfer antibiotic-resistance genes 
(ARGs) to other enteric bacteria in the host’s intestinal tract (Zalewska et al. 2021). 
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For instance, the transfer of ciprofloxacin, azithromycin, or 
tigecycline resistance has been detected in Pseudomonas 
aeruginosa and Enterococcus faecalis (Brooks et al. 2021). 
Food-producing animal farms are ARB hotspots (Alhababi 
et al. 2020; Eltai et al. 2020a, 2020b; Guo et al. 2021). There 
have been many studies on the extensive use of antibiotics 
in livestock and aquaculture industries and the potential 
risks posed to animal and public health through the spread 
of AMR (Baquero 2012; Kimera et al. 2020; Kim et al. 
2021; Yun et al. 2021; Lin et al. 2021; Pissetti et al. 2021). 

Several efforts have been made to minimise excessive AM 
usage in food-producing animal farms. The European Union 
banned their use as growth promoters and prophylactics, 
and the United States significantly reduced their usage in 
food animals (Kogut 2017; World Health Organization 
2017). Nevertheless, AMs remain necessary for limiting 
disease in food animals and maintaining production levels 
to meet global demand. An important aspect of AM 
stewardship is identifying alternatives to continue treating 
animals but limiting AMR spread (Ricker et al. 2020). One 
promising approach is microbiome engineering (Foo et al. 
2017; Kogut 2017; Cullen et al. 2020; Bae et al. 2021; 
Diarra et al. 2021). Studies have shown that manipulation 
of domesticated animal microbiomes can be a powerful tool 
to reduce morbidity and fight infectious diseases. The most 
studied animal microbiome engineering products are 
probiotics and prebiotics; however, there are reports of the 
use of postbiotics and combinations of the three (synbiotics; 
Jin Song et al. 2019; Kober et al. 2022). 

Prebiotics are non-digestible food ingredients that stimulate 
the growth and/or activity of beneficial gut microbiota 
(Mountzouris 2022). These authors demonstrated an improve-
ment in the abundance of beneficial bacteria such as 
Bifidobacterium and/or Lactobacillus spp., which help in 
digestion, defence against pathogens, constipation relief, and 
shift the microbial populations reducing pathogen numbers 
(Cullen et al. 2020). Probiotics are viable ingestible microor-
ganisms obtained from a healthy donor. They are used to 
restore or enhance gut microbiota. The best-studied probi-
otics include members of the genera Bacillus, Lactobacillus, 
Bifidobacterium, Enterococcus, Lactococcus, Megasphaera, 
Pediococcus, and  Propionibacterium (Wideman et al. 2015; 
Jin Song et al. 2019). These bacteria aid in fibre fermentation, 
regulate inflammatory responses, help amino acid and vitamin 
production, and support the maintenance of gut–brain axis 
(Yan and Polk 2020). 

Additionally, these organisms play a crucial role in 
improving host immunity against pathogens by preventing 
colonisation or proliferation through competition, releasing 
antimicrobial molecules, and improving the intestinal barrier 
function and immunomodulation (Wan et al. 2019; Cullen 
et al. 2020). Most notably, probiotics can fight infectious 
diseases in animals, thus reducing the pressure on antibiotic 
use (Jin Song et al. 2019). The most frequently used 
probiotics in livestock are the lactic acid bacteria and 

Bifidobacterium strains (Kober et al. 2022). Postbiotics, are 
products or metabolic by-products secreted by bacteria or 
released after bacterial lysis (Aguilar-Toalá et al. 2018; Wan 
et al. 2019). An example of postbiotics are short-chain fatty 
acids (SCFAs), enzymes, peptides, and organic acids. Notably, 
organic acids were found to have an AM effect against ARB 
(Roth et al. 2017). 

Several studies have investigated microbiome products as 
substitutes for AMs for improving food-producing animal 
production and animal health (Han et al. 2017; Ayala et al. 
2019; González-Ortiz et al. 2020; Helmy et al. 2020; Bae 
et al. 2021; Zhe et al. 2021; Pham et al. 2022). Yet, data on 
their effects on AMR are limited. Therefore, reviewing major 
literature databases and selecting original studies from a set 
of criteria may help identify the missing gap in the impact of 
microbiome products in fighting AMR in food animals. Herein, 
we present a systematic review that may unify the assessment 
of microbiome products in combating antimicrobial resistance 
in food animals. The main objectives extended to investigate 
the common type and composition of the products used for 
food animals and evaluate their effects on animals’ state of 
health and productivity. 

Materials and methods 

Database searches 

This systematic review was performed following the PRISMA 
checklist for standards for systematic reviews (Moher et al. 
2009). Three databases were screened on 28 November 
2021, no date limits were applied. The filtered databases 
were ScienceDirect, SCOPUS, and Web of Science. The 
search was updated on 14 March 2022, by adding a fourth 
database (Embase), with date restrictions for the articles 
published before 28 November 2021. Additional articles 
were identified by searching the references of the included 
studies and the first 100 results of Google Scholar. 

The search strategy included terms on the topics of animal, 
microbiome, antimicrobial resistance, and antibiotics, consis-
tent with the eligibility criteria. One example of the exact 
search string was (‘(animal)’ AND ‘(microbiome)’ AND 
‘(antimicrobial resistance)’ AND ‘(antibiotics)’). Only studies 
published in English were included. 

Study screening 

All studies were imported into Zotero, and duplicates were 
removed using the built-in ‘Find Duplicates’ feature. The 
titles and abstracts were independently screened by two 
independent reviewers (LA and A-RJ). The following three 
questions were used to determine whether the study met 
the eligibility criteria: 

1. Does the paper describe a primary research study? 
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2. Does the paper describe the use of microbiome products 
(prebiotics, probiotics, postbiotics, or synbiotics) and 
have they been tested on food animals? 

3. Does the paper include the outcome of using the 
microbiome products on the antimicrobial-resistant 
bacteria and animals’ productivity? 

Full-text review using the same criteria was performed for 
(1) studies that met all of the inclusion criteria and (2) studies 
for which this could not be conclusively determined. Studies 
that did not meet all eligibility criteria were excluded. Full-
text review was similarly performed by two independent 
reviewers (LA and A-RJ). A third independent reviewer 
(HA) resolved disputes between the two reviewers during 
the title/abstract screening and full-text review stages. The 
reviewers screened the references in the included papers 
after completing data extraction. The titles and abstracts of 
the references were screened by the reviewer (LA), 
following the same criteria as in the original search and 
then double-checked by the reviewer (A-R J). The full texts 
of these articles were reviewed following the same process 
as above. 

Data extraction 

The author (LA) reviewed all full-text studies meeting the 
initial criteria and extracted data from included papers 
using a data-collection form. The following information was 
recorded for each manuscript where applicable: the author, 
publication year, country, food animal and the number of 
animals, type of microbiome products (prebiotics, probiotics, 
postbiotics, or synbiotics), proposed mode of administration, 
targeted ARB, effect on or ARG abundance, outcome measures 
evaluated (effect on animal health/production), and the 
authors’ conclusions. The data were then reviewed by the 
author (A-R J) for final inclusion in the review, duplicate 
screening, eligibility, and quality assurance. Any disagree-
ments were resolved by consensus. 

Data synthesis 

The primary outcome was the effect of the product on the 
abundance of ARB or the ARGs. We also assessed the studies 
according to the frequently studied food animals and the most 
investigated AM-resistant bacteria or genes. Likewise, we 
examined the the effects of the product on animals’ health. 
We stratified the microbiome products according to their 
components (prebiotics, probiotics, postbiotics, or synbiotics) 
to find the rate of its effect on the AMR/ARGs in animals. In 
each study, ARB or gene results were then sorted as showing 
an increase, decrease, or no change in resistance. 

All study results were compared in regard to the efficiency 
of the applied products on AMR abundance and the outcomes. 

Results 

The search and selection processes are shown in Fig. 1. 
In total, 925 records were identified from the databases 
and manual searches. Removing duplicates resulted in 755 
records for the initial title and abstract screening. From 
which, only 49 papers were retained. After reviewing the 
full texts, eight studies were included from the search, and 
two were abstracts only (Hofacre et al. 2002; Sommer-Lassa 
et al. 2019). In total, 402 references were retrieved from 
the eight included studies. Their titles and abstracts were 
screened, and only three studies met the inclusion criteria. 
The full texts of these were assessed, and all were included. 

Information on the year of publication, country of the 
study, animal species studied, microbiome studied, investi-
gated resistance, targeted bacteria, and other general 
characteristics are described in Tables 1–3. The earliest 
article was published in 2002, while all the remaining 10 
papers were published from 2014 onward, with 63.6% of 
them published between 2014 and 2019. Only 27.3% were 
published in the last 2 years (i.e. 2020–2021). The United 
States was the most represented country (36.4%), followed 
by the Netherlands (18.2%). The five remaining studies 
were conducted in the United Kingdom, Ireland, Austria, 
Spain, and Colombia. It is worth mentioning that the study 
location in three of the included studies was not specified 
but was inferred from the first author’s primary affiliation 
(Hofacre et al. 2002; Delgado et al. 2014; Ceccarelli 
et al. 2017). 

The most investigated food animals were chickens 
(63.6%), followed by bovines (e.g. steers, bulls, and heifers, 
at 36.4%). Pigs were investigated only in one study (9.1%). 
The average age of the food animals studied ranged from 
1 day to 218.6 days. Most of the studied animals were 
young; all chickens investigated were chicks, and most of the 
studied bovines and pigs were weaned. Only two studies used 
adult animals for their investigation (e.g. bulls and heifers). 

Information about the microbiome products and the 
targeted bacteria addressed in the included studies are 
summarised in Table 2. In general, most of the included studies 
investigated the effect of probiotics on AMR (54.5%). 
Postbiotics were tested in three studies, synbiotics in two 
studies, and prebiotics were evaluated only in one study. 
Many probiotic products contained Lactobacillaceae species 
or the products of Saccharomycetaceae species. Multiple 
routes of dietary product administration were used in all the 
studies, except one study in which a direct administration 
challenge was employed. Escherichia coli was the most 
frequently targeted bacteria in the included studies (45.5%), 
followed by Salmonella Enteritidis (18.2%). The targeted 
bacteria were not specified in four of the included studies. 

The abundance of different AMR or ARGs in food animals 
was investigated in the included studies, to evaluate the 
efficacy of microbiome products in tackling AMR. Briefly, 
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Fig. 1. PRISMA schematic selection process of the included studies at each stage of the 
screening process. 

three included studies analysed resistance in both AMR and 
ARG, five studies targeted AMR only, and three studies 
targeted ARGs only. Only one study did not specify the 
AMR or ARGs of the investigated resistance. Interestingly, 
tetracycline resistance was the most frequently investigated 
in the included studies, followed by beta-lactam and 
macrolide resistance. Other investigated AMR and ARGs are 
shown in Table 3. Overall, 90.9% of the samples were from 
the gastrointestinal tract (GIT), including rumen, colon, small 
intestine, large intestine, whole intestine, duodenal and faecal 
swabs (Table 3). Alternatively, 9.1% of the collected samples 
were taken from organs other than the GIT, such as the 
yolk sac. 

The effectiveness of the microbiome products on animal 
health and on AMR/ARG abundance was also evaluated. 
Generally, product effectiveness varied according to the 

type and composition of the microbiome product. In the 
case of probiotics, 50% of the studies described an increase 
in animal health, 25% reported no increase, and 25% did 
not specify the product effectiveness. All other types of 
microbiome products included in the review (prebiotic, 
postbiotic, and synbiotic) showed increased animal health 
and productivity. In terms of the effectiveness of the tested 
product on AMR and ARGs, varying results were observed 
in the included studies. A significant decrease in the AMR 
or ARG abundance was reported in 62.5% of the studies 
that examined probiotics, whereas the remaining 37.5% 
showed no effect. Likewise, precise results varying between 
an increase and a decrease and no impact on the AMR or 
ARGs abundance were reported while using the prebiotic 
product. The remaining products (postbiotic and synbiotic) 
reported a reduction in the number of the AMR or ARGs. 
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Table 1. Characteristics (publication year, country, and animal studied) of the 11 included studies. 

Reference Publication year Country Animal Animal category Number Age 

Casanovas-Massana et al. (2014) 2014 SpainA Bovine Holstein bulls 40 218.6 ± 2.62 (mean ± s.e.) 

Pigs Weaned 30 21 days 

Lee et al. (2021) 2021 United Kingdom Chicken Chicks 220 14 days 

Huebner et al. (2019) 2019 United States Bovine Yearling steers 4689 N/S 

Sommer-Lassa et al. (2019) 2019 United StatesA Bovine Weaned steers 32 N/S 

Delaney et al. (2021) 2021 Ireland Chicken Chicks 16 1-day old 

Ceccarelli et al. (2017) 2017 Netherlands Chicken Chicks 24 1-day old 

Dame-Korevaar et al. (2020) 2020 Netherlands Chicken Chicks 100 1-day old 

Hofacre et al. (2002) 2002 United States Chicken Chicks N/S 1 and 2 days 

Feye et al. (2016) 2016 United States Bovine Heifers 1495 N/S 

Roth et al. (2017) 2017 Austria Chicken Chicks 480 1-day old 

Delgado et al. (2014) 2014 ColombiaA Chicken Chicks 60 1-day old 

AThe country was inferred from the author’s affiliation. 
N/S, not stated. 

Table 2. Summary on characteristics of microbiome products and the targeted bacterial species in the included studies. 

Reference Product type Name or composition Targeted bacteria 

Casanovas-Massana et al. (2014) Probiotic Toyocerin® (Bacillus toyonensis BCT-7112T) N/S 

Lee et al. (2021) Probiotic Yeast (Candida famata) Escherichia coli 
Bacterium (Lactobacillus plantarum) 

Huebner et al. (2019) Postbiotic Saccharomyces cerevisiae fermentation product (SCFP) N/S 

Sommer-Lassa et al. (2019) Probiotic Saccharomyces cerevisiae feed additive N/S 

Delaney et al. (2021) Prebiotic Mannan-rich fraction (MRF) Escherichia coli 

Ceccarelli et al. (2017) Probiotic Intestinal microflora (Aviguard) Extended-spectrum cephalosporin 
(ESC)-resistant Escherichia coli 

Dame-Korevaar et al. (2020) Probiotic Unselected fermented intestinal bacteria (CEP) Aviguard ESBL/pAmpC-producing Escherichia coli 
Synbiotic Fucto-oligosaccharides and Enterococcus faecium, 

Bifidobacterium animalis, Lactobacillus salivarius (PoultryStar sol; 
Biomin Holding GmbH, Getzersdorf, Austria) 

Hofacre et al. (2002) Probiotic Commercial competitive exclusion Escherichia coli O78:K8 multidrug resistance 

Feye et al. (2016) Postbiotic Novel Saccharomyces cerevisiae fermentation prototype Salmonella Enteritidis 
(PRT; NaturSafeTM) 

Roth et al. (2017) Postbiotic Feed additive (FA) based on formic acid, acetic acid and Escherichia coli 
propionic acid 

Delgado et al. (2014) Synbiotic Glycerol with FloraMax-B11 Salmonella Enteritidis 

N/S, not stated. 

Discussion 

To our knowledge, this study is the first systematic review 
providing an overview of the different microbiome 
products targeting antimicrobial resistance in food animals. 
Unfortunately, only a few studies have been concerned with 
fighting a specific AMR. Through the systematic search in 
four screened databases, only 11 studies fit our eligibility 
criteria. A possible reason is the established inclusion/ 
exclusion criteria of this review. Many of the previously 

published studies were aimed to find alternatives for the 
AMs without specifying a certain AMR or focusing on a 
targeted ARG (Foo et al. 2017; Kogut 2017; Cullen et al. 2020; 
Bae et al. 2021; Diarra et al. 2021). Also, some investigated 
products fighting certain AMR in bacteria isolated from 
food animals but were tested in vitro, not on food animals. 
In addition, the English language restriction had been a 
debatable topic in terms of affecting the search strategies 
while conducting systematic reviews. Dobrescu et al. 
(2021) reported that English language restriction can 
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Table 3. Summary of investigated resistance and product effectiveness of microbiome products on animal’s health and AMR or ARGs abundance. 

Reference Investigated resistance Samples intended Outcome AMR/ARG Author’s conclusions 

Targeted AMR Targeted ARG to evaluate the 
effects of the 

measures 
evaluated 

abundance 

products 

Casanovas- Tetracycline tetM Rumen N/S No effect ‘The use of the feed additive Toyocerin® did 
ne and 
in the 

Massana et al. Chloramphenicol cat Colon not increase the levels of tetracycli
(2014) chlo

intes
beyo

ramphenicol-resistant bacteria 
tinal tracts of piglets and Holstein bulls 
nd the contribution directly associated 

Lee et al. Ampicillin N/S Whole intestine No effect 

with 
spor

No effect ‘The 

the introduction of Bacillus. toyonensis 
es through diet’. 

accumulation of iron and the genetic 
istance(2021) Chloramphenicol 

Nalidixic acid 
Tetracycline 

Yolk Salk 
Caecal digesta 
Duodenal 

elem
may 

ent conferring tetracycline res
be intertwined.’ 

Huebner et al. Aminoglycoside ctx 

Ileal 

Faecal swab No effect No effect ‘There were no differences in the resistome 
(2019) Beta-lactamases 

Macrolide 
by treatment group.’ 

Sommer-Lassa 

Tetracycline 

N/S Mef (EN2) Faecal swab N/S Decreased ‘Feeding with Saccharomyces cerevisiae feed 
gene read et al. (2019) Lnu (AN2) addit

abun
ive significantly reduced AMR 
dances.’ 

Delaney et al. N/S ARGs corresponding Caecum Increased VariableA ‘The presence of high ARGs in food animals 
(2021) to: 

1. efflux pumps 
2. porins 
3. tetracycline 
4. glycopeptide 
5. beta-lactam 
6. aminoglycoside 

coul
health.’ 

d adversely affect both animal and human 

Ceccarelli 

7. peptide 
8. MLSB 
9. nucleoside 
10. fluoroquinolone 
11. diaminopyrimidin

Cefotaxime blaCTX-M-1 

e 

Faecal swab Increased Decreased ‘The use of competitive exclusion a
et al. (2017) Ciprofloxacin Manure inter

E. co

s an 
vention strategy to control ESC-resistant 
li in the field.’ 

Dame- N/S blaCTX-M-1 Faecal swab Increased Decreased ‘A prolonged supply of competitive exclusion 
tch, may Korevaar et al. Caecal content products, provided shortly after ha

(2020) be a
prev

pplied as an intervention to reduce the 
alence of ESBL/pAmpC-producing bacteria 

Hofacre et al. N/S N/S Small intestine Increased 

in th

Decreased ‘The 

e broiler production chain.’ 

least amount of reduction of 
(2002) Large intestine 

Caeca 
colo
com

nisation of the challenge E. coli by the 
petitive commercial exclusion was by the 

Feye et al. Ceftiofur N/S Faecal swab Increased 

direc

Decreased ‘This 

t oral gavage at 2 days of age.’ 

study revealed that a proprietary 
(2016) Enrofloxacin 

Florfenicol 
Sacc
prot
carri

haromyces cerevisiae fermentation 
otype inhibits the shedding, lymph node 
age, downstream virulence, and antibiotic 

Roth et al. Ampicillin N/S Caecal Increased 

resis

Decreased ‘A si

tance of Salmonella residing in cattle.’ 

gnificant reduction in total E. coli count 
(2017) was not observed in the present study. 

Cefotaxime 
Ciprofloxacin 

Streptomycin 

Therefore, a possible selective effect of a feed 
additive on resistant E. coli should be 
investigated further.’ 

(Continued on next page) 
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Table 3. (Continued). 

Reference Investigated resistance 

Targeted AMR Targeted ARG 

Samples intended 
to evaluate the 
effects of the 

Outcome 
measures 
evaluated 

AMR/ARG 
abundance 

Author’s conclusions 

products 

Sulfamethoxazol 
Tetracycline 

Delgado et al. 
(2014) 

Nalidixic acid 
Novobiocin 

N/S Caeca–caecal tonsils 
(CCT) 

Increased Decreased ‘Synergistic effect on dietary supplementation 
of 5% glycerol combined with FloraMax-B11 
in reducing the amount and incidence of 
Salmonella from neonate broiler chickens.’ 

ADifferent AMR/ARG abundance was reported in the study, varying among an increase, a decrease, and no effects. 
N/S, not stated. 

slightly affect the estimations and conclusions for most 
medical topics. 

Additionally, there are inconsistent definitions of the 
term ‘food-producing animals’. The WHO defined this term 
as ‘all terrestrial and aquatic animals (that is, includes aqua-
culture) used to produce food’ (World Health Organization 
2017). Yet, distinct definitions are used by different 
countries or regions. For instance, cats, dogs, rats and other 
wild animals were considered food animals in China before 
the pandemic of COVID-19 (CMOA 2020). Therefore, more 
animal species were expected to be in the searching process. 

The majority of the included studies were published from 
2014 onward. This outcome emphasises how an investigation 
of the effect of microbiome products on fighting AMR of ARGs 
is still at a preliminary stage. Therefore, studying the impact 
of different microbiome products on the AMR or ARGs found 
in food animals needs further exploration. The United Nations 
Food and Agriculture Organization (FAO) classified the 
United States as one of the top food-animal producers (FAO 
2021). As such, the findings of this review meet the expecta-
tion since most of the included studies were conducted in the 
USA (36.4%). Moreover, chickens were the most investigated 
animals in the included studies. Indeed, poultry production 
is among the widespread industries worldwide (Ma et al. 
2021a). Chicken is one of the most commonly farmed 
species, with over 90 billion Mg of chicken meat produced 
yearly (Agyare et al. 2018). According to the FAO, more 
than 10 billion chickens were farmed by China in 2018 alone, 
and poultry meat production reached more than 100 million 
chickens globally (FAOSTAT 2018). Thus, special attention 
has been dedicated by researchers to studying chicken as a 
food animal. 

Interestingly, nearly all the microbiome products of the 
included studies were tested on animals of a young age. 
Jackson et al. (2017) reported some limitations of using 
older animals, such as cost and maintaining historical-data 
comparability. Hence, young animals helped the researcher 
establish a baseline or control for the experiment, since 
young aged animals have less microbiome mixture (Jackson 
et al. 2017). Thus, they have less contact with the surrounding 

environment or other animals and no sexual activities (Xu and 
Zhang 2021); these factors could affect the microbiome 
mixture and its levels. As well, younger animals may have 
less possible antibiotic residues in their bodies (Basulira 
et al. 2019), which can affect the activity of the proposed 
product tested. 

It is worth noting that food animals play a significant role 
in spreading resistant microorganisms into the environment 
through their manure and to the final consumer (human) 
either through their products such as milk or meat or by 
direct contact with farmworkers (Kumar et al. 2021). The 
prevention of AMR is associated with the One Health 
concept, which states that human health is related to the 
health of animals and the environment (Mackenzie and 
Jeggo 2019). 

Xu et al. (2022) investigated the most prevalent ARB and 
ARGs in the farm animals considered a tremendous ARB 
and ARGs reservoir. They found that most resistance is to 
β-lactams (bla), aminoglycosides (aac), tetracyclines (tet), 
sulfonamides (sul), macrolide–lincosamide–streptogramin B 
(MLSB; erm), FCA (fluoroquinolone, quinolone, florfenicol, 
chloramphenicol, and amphenicol; fca), vancomycin (van), 
colistin (mcr), and multidrugs (mdr) (Xu et al. 2022). 
Interestingly, the most commonly used antibiotics in 
poultry-intensive production are tetracyclines (Mehdi et al. 
2018). Skarżyńska et al. (2020) assessed the AMR epidemi-
ology in different animal species, including farm and wild 
animals, and found that tetracycline resistance was occurring 
in almost all tested animals, followed by the resistance to 
macrolides, aminoglycosides, and β-lactams. Not surprisingly, 
our findings are comparable with the findings of the previous 
studies that tetracycline resistance is most targeted, followed 
by macrolide and beta-lactam resistance in different food 
animals (Mehdi et al. 2018; Skarżyńska et al. 2020; Ma 
et al. 2021a, 2021b; Xu et al. 2022). This is in agreement 
with the most reported antimicrobials used in food-animal 
production systems, namely, tetracycline, sulfonamides, 
β-lactams aminoglycoside, and penicillin (Kimera et al. 
2020; Ma et al. 2021b). Tetracyclines were the most widely 
used antimicrobial class in veterinary medicine for decades 
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(Skarżyńska et al. 2020). They represent more than two-thirds 
of antimicrobials administered in poultry production in the 
USA (Ma et al. 2021b). 

Escherichia coli and Salmonella are the major causes of 
infections in poultry and other food animals such as cattle 
(Barrow et al. 2012; FDA 2020). For example, Salmonella is 
an important pathogen in chickens, causing septicaemic 
diseases such as fowl typhoid (FT) and pullorum disease 
(PD; Shivaprasad 2000). It has been found that E. coli and 
Salmonella have several antibiotic-resistant genes isolated 
from different animal meats and play a major role in 
AMR dissemination (Feye et al. 2016; Lee et al. 2021). 
Additionally, previous studies have shown that cattle and 
pigs are carriers of pathogenic E. coli, such as Shiga toxin-
producing E. coli (STEC), and are considered pathways for 
introducing STEC into the environment (FDA 2020). 
Furthermore, these organisms have been known to acquire 
resistance through horizontal gene transfer (Frazão et al. 
2019) With the emergence of AMR, the effectiveness of 
the AM has decreased, posing a risk to the consumer and 
a threat to public health (Chaudhary et al. 2014; Johar 
et al. 2021). 

The bacteria most widely used as probiotics are Bacillus 
spp., Lactobacillus spp., Enterococcus spp. Bifidobacterium 
spp., and Streptococcus spp. (Abd El-Hack et al. 2020; 
Bhogoju and Nahashon 2022). In recent years, probiotic 
development has evolved away from bacteria and toward 
other species such as yeasts, such as Saccharomyces spp. 
(Elghandour et al. 2020; Ahiwe et al. 2021) and Candida 
spp. (Mokhber-Dezfouli et al. 2007). Our findings illustrated 
that Lactobacillus had been extensively used in the composi-
tion of the microbiome products. Dowarah et al. 2017 
provided a review on the use of Lactobacillus as an alternative 
to antibiotic growth promoters in pigs. Their main outcomes 
supported the use of different species of Lactobacillus as 
an effective and safe alternative to antibiotics for swine 
production due to their high stability in vivo (Czerucka 
et al. 2007; Palma et al. 2015). Moreover, the present 
review has demonstrated that Saccharomyces cerevisiae, as  
a probiotic, is commonly used alongside the probiotic bacteria 
(Table 2). Its common usage is likely to be due to its natural 
presence in the environment, low cost and natural resistance 
to many antibiotics. Furthermore, its fermentation products 
reduced the AMR and food-safety pathogens detected in 
farm animals’ faeces (Huebner et al. 2019). Another important 
fact is that S. cerevisiae may not acquire genes as the bacterial 
probiotics do. Bacterial probiotics are capable of acquiring 
genes that confer resistance to antibiotics from other bacteria 
in the host, and pass them on to the bacterial pathogen 
(Temmerman et al. 2003; Mathur and Singh 2005). Hence, 
S. cerevisiae usage might reduce the spread of AMR or ARGs. 

It is worth mentioning that bacteriophages have 
great potential to act as an alternative for antimicrobials. 
Laird et al. (2022) synergised bacteriophages with AMR-
free commensal bacteria. They found that this mixture is 

capable of reducing and possibly eliminating drug-resistant 
bacteria in vitro (Laird et al. 2022). This study was included 
with the full-text screening but failed to meet the inclusion 
criteria as the product should be tested on food animals 
(in vivo studies). Another similar work that has been recently 
published demonstrated the effectiveness of using bacterio-
phages to reduce drug-resistant Salmonella colonisation in 
pigs (Thanki et al. 2022). 

The potential advantages of feeding microbiome 
products to food animals is to improve their state of health 
are of growing interest. On the basis of our findings, it has 
been demonstrated that an intake of specific microbiome 
products increases the effectiveness of animals’ health. For 
example, a study conducted by Delaney et al. (2021) found 
that administering mannan-rich fraction (MRF), a prebiotic, 
to 16 broiler chickens, starting at birth and continuing 
to approximately 5 weeks of age, altered the microbiota 
balance. As a positive consequence, the treated broilers 
showed improvement in growth performance, indicating 
weight gain and a higher European production efficiency 
factor. These results are consistent with those of other similar 
studies (Feye et al. 2016; Ceccarelli et al. 2017; Roth et al. 
2017). They may influence higher effectiveness in animal 
health achieved through a shift in the functional capability 
of the microbiota during the administration of microbiome 
products. This agrees with the findings of Al-Shawi et al. 
(2020) and Anee et al. (2021). Evidence of improved 
growth and feed efficiency, reduced mortality, and enhanced 
health was clearly shown after using probiotics. In their 
review, Al-Shawi et al. (2020) reported several studies that 
had shown an increase in the growth and production of 
animals, consequently improving health states. At the same 
time, Anee et al. (2021) discussed the general role of 
probiotics in poultry and ruminants. Their review showed 
the positive impact of probiotics in improving growth 
performance, reducing infection and diseases, and inducing 
beneficial immune response in poultry. As well as 
improving body weight and milk production, along with 
lowering infection and diarrhoea in ruminants. Another 
advantage of using microbiome products is that they do not 
leave residues, as antibiotics do, so that they can be a better 
choice as long-term prophylactics and growth enhancers. 
The continuous administering of probiotics can result in a 
maintained high state of the stimulated immune system 
(Lee et al. 2021). 

Several studies have confirmed the capability of probiotics 
to improve animal health and inhibit pathogens. Even though 
investigations have shown that probiotic effectiveness is 
uncertain and can be affected by conditions (i.e. environ-
ment, sickness, diet), strain-dependent, and transient 
(Cameron and McAllister 2019). Likewise, probiotics can 
develop antimicrobial resistance, which can be taken by 
gene mutations or by horizontal gene transfer (Li et al. 
2020) gained from the GIT, since it acts as a reservoir for 
ARGs (Daniali et al. 2020). Another issue that has been 
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discussed is the poor quality of some commercial probiotic 
formulations that contain contamination with other 
microbes (Jackson et al. 2019; Anokyewaa et al. 2021). 
Also, the absence of standardised protocols for in vitro and 
in vivo investigations limits the evaluation of the potential 
of new species and strains, leading to an unclear correla-
tion between the outcomes of both methods (Vinderola 
et al. 2017). 

Conclusions 

In conclusion, there is a global agreement that people and 
animal health are at high risk due to antibiotic resistance. 
Alternative therapies have been developed to reduce 
the dependence on AM in intensive animal farming. The 
present review illustrated that using probiotic-containing 
Lactobacillus and S. cerevisiae targeting specific AMR/ARGs 
is promising. Also, we have noticed the apparent gap in the 
efficacy of microbiome products to fight AMR/ARGs, since 
data on this topic are limited. Several investigations have 
targeted food-animal pathogens, but few have battled a 
specific AMR. Thus, further advanced studies on the effect 
of microbiome products for combating AMR/ARGs in food 
animals are needed. Experts from different fields should 
collaborate to improve the commercial microbiome products 
and develop novel therapeutics to tackle the ARB problem. 
Moreover, farmers should decrease or avoid the unnecessary 
use of antibiotics as a growth promoter in food animals to 
limit the spread of AMR. 
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