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ABSTRACT

Progress towards methane (CH4) mitigation for the red meat, milk and wool sectors in Australia and
reduced CH4 emissions intensity (g CH4/kg animal product, typically milk or liveweight gain) involves
not only reduced net emissions but also improved productive efficiency. Although nutritional
additives have potential to reduce CH4 production rate of livestock (g CH4/head.day), systemic
improvement of the nutrition of grazing breeding females, the largest source of CH4 emissions
in Australian agriculture, will also be required to reduce emissions intensity. Systemic changes that
increase productive efficiency for producers are part of the economic and environmental ‘win–win’
of reducing emissions intensity, and so offer good potential for adoption by industry. For sheep and
cattle breeding enterprises, improved nutrition to achieve a younger age at first joining and increased
reproductive rate will reduce the proportion of CH4-emitting, but unproductive, animals in a herd.
However, if breeding stock are managed to be more productive (e.g. by superior nutrition leading to
greater product/breeder) and more efficient (e.g. greater product per kilogram DMI) the producer
is faced with the following management challenge. Should the enterprise increase stock numbers to
utilise surplus feed and gain extra product, or reduce stock numbers to maintain previous product
output with smaller enterprise net emissions (and emissions intensity), and somake land available for
other uses (e.g. tree plantings, conservation zones). The right balance of incentives and price on
carbon is necessary to achieve a result whereby total emissions from Australian agriculture are
reduced, and so a positive impact on climate change is achieved.

Keywords: emissions, farm-level solutions, GHG inventory, greenhouse gases, methane, mitigation
pathways, ruminant, simulation.

Introduction

Enteric-methane (CH4) emission represents a natural energy loss from the ruminant 
fermentation process, and it is the principal greenhouse-gas (GHG) emission from 
agriculture. Enteric CH4 accounts for 43% of the GHG emissions from agriculture, globally 
(Herrero et al. 2016). In Australia 73% of the GHG emissions from the agriculture sector are 
CH4 (Fig. 1). As CH4 has a brief lifetime in the atmosphere (i.e. from 8.4 to 12 years, Ehhalt 
et al. 2001), mitigating CH4 may offer a substantial pathway to achieve climate stabilisation 
targets. Inspired by the methane pledge raised on the 26th United Nations Climate Change 
Conference of the parties (COP26) recently held in Glasgow, in which a global partnership 
committed to lower CH4 emissions by 30% by 2030, we used the state of New South Wales 
to assess whether and how we can achieve this goal. 

In NSW, livestock CH4 emissions are mainly due to the 26.1 million head of sheep and 
4.92 million head of cattle (MLA 2019; Australian Government 2020). There are opportunities 
to reduce CH4 emissions while improving ruminant efficiency from a metabolic to a farming-
system level. Inspiration for the potential of improved productivity and efficiency to reduce 
CH4 emissions at a state-wide scale can be taken from Capper et al. (2009) who, speaking of the 
change in the US dairy industry since 1944, said that ‘Modern dairy practices require 
considerably fewer resources than dairying in 1944 with 21% of animals, 23% of feedstuffs, 
35% of the water, and only 10% of the land required to produce the same 1 billion kilograms of 
milk. Waste outputs were similarly reduced, with modern dairy systems producing 24% of the 
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Fig. 1. Contribution of each ruminant species and category (%) to the
total enteric-methane production in New South Wales (NSW).
(Source: AGEIS; Australian Government 2020).

manure, 43% of CH4, and 56% of N2O per billion kg of milk 
compared with equivalent milk from historical dairying.’ 
(p. 2160). 

The developing suite of mitigation options for enteric CH4

have been regularly reviewed and tend to focus on dietary 
additives, with potential to reduce CH4 yield at animal scale 
(e.g. Martin et al. 2010; Cottle et al. 2011; Grainger and 
Beauchemin 2011; Hristov et al. 2013; Almeida et al. 2021). 

However, progress towards carbon neutrality for the red 
meat sector in Australia as well as reduced emissions intensity 
(g CH4/kg animal product, typically milk or liveweight gain) by 
30% for the dairy sector involves not only reduced emissions 
but also improved productive efficiency. Thus, whole-farm 
approaches based on systemic nutritional improvement, 
which can lead to reductions in net CH4 emissions at enterprise 
scale, will be essential. 

The NSW state GHG inventory shows that 91% of enteric 
CH4 is sourced from grazing cattle and sheep (i.e. 92% of 
ruminant population; Fig. 1). Moreover, cows (3 021 292 
head) and ewes kept for reproduction purposes (15 229 986 
head) are 58.6% of the total ruminant population in NSW 
(Fig. 2), contributing to 60% of the state’s enteric CH4

emissions; thus, targeting improved fertility in breeding 
females is a real opportunity to reduce CH4 emissions in NSW. 

This review assesses whole-farm strategies to reduce total 
enteric emissions produced by ruminant livestock in NSW, 
with a focus on nutritional strategies that can improve 
grazing-animal efficiency at enterprise scale, in particular 
that of breeding females. While improved nutrition will be 
the most important strategy for achieving reduced emission 
intensity, other strategies that can improve productivity, such 
as genetic selection, improved animal health, and targeted 
turning off of unproductive animals, may also contribute 

Fig. 2. Ruminant population by species (vertical bar) and category (pie chart) in New South
Wales (NSW). (Source: AGEIS; Australian Government 2020).
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(in some cases, additively), but are not the focus of this review. 
Methane-abating dietary additives have been comprehen-
sively reviewed elsewhere (Almeida et al. 2021; Almeida and 
Hegarty 2021), and in most cases, challenges with delivery of 
such additives to grazing production systems are yet to be 
overcome. This review, first, addresses the means by which 
improved nutritional management can achieve improvement 
in reproductive efficiency. It then assesses the means and 
implications of improving the nutritional quality of the grazing 
basal feed for enterprise-scale emissions and/or using 
methane-supressing feed additives. Finally, the impact of 
changing reproductive rate (as a sum of these strategies) in 
NSW livestock by 5–10% is assessed using simulations to 
verify the sensitivity of the current CH4 emissions by using 
the National Greenhouse Gases Inventory methodology in 
different scenarios. 

Calculations of enteric-CH4 contribution to
GHG inventories

The method used in the national and state inventories to 
estimate enteric CH4 emissions (Department of Industry, 
Innovation, Climate Change, Science, Research and Tertiary 
Education 2011) differs between sheep and cattle, but both 
ultimately rest on the relationship between CH4 yield and 
dry-matter intake (DMI). Sheep emissions are based on 
calculations that include liveweight, growth and dry-matter 
digestibility (DMD) of feed to calculate DMI, while grazing 
beef emissions rely on animal liveweight and growth to 
calculate DMI. For grazing beef and dairy cattle, there is an 
assumed relationship between dry-matter intake (DMI) and 
CH4 production of 20.7 g CH4/kg DMI (Charmley et al. 2016) 
where DMI is calculated from liveweight and liveweight gain 
by using the equations of Minson and McDonald (1987), for 
each class of cattle × season × state × region, and a separate 
feed intake adjustment for milk production for lactating beef 
or dairy cattle, which for dairy cattle incorporates the 
metabolisability of the diet (Minson and McDonald 1987). 

For sheep, CH4 production is calculated by the the 
following linear equation proposed by Howden et al. (1994): 

CH4ðkgÞ = DMI × 0.0188 + 0.00158, 

where DMI is the product of potential feed intake (as 
calculated by AFRC 1990) by using a function of liveweight 
and metabolisable energy content (Minson and McDonald 
1987; Department of Industry, Innovation, Climate Change, 
Science, Research and Tertiary Education 2011), relative 
feed intake (as calculated by White et al. (1983)) by using a 
function of the dry-matter availability), and additional DMI 
for milk production (Department of Industry, Innovation, 
Climate Change, Science, Research and Tertiary Education 
2011), for each class of sheep × season × region. 

The first point of consideration is whether Minson and 
McDonald’s (1987) equation should be applied to sheep, as 
it was built for cattle. The implication of these methods for 
calculating livestock emissions is that increased animal 
productivity (e.g. liveweight gain), which in grazing livestock 
is primarily achieved by increasing digestible organic-matter 
(OM) intake, will lead to an increased CH4 production rate 
(g CH4/head.day), albeit with a reduced emissions intensity. 
The impact of changing the system productivity on enterprise-
scale emissions is wholly dependent on how the manager 
chooses to respond to increased productivity in terms of 
livestock numbers and area under grazing. All that these 
management strategies provide to a livestock manager is 
opportunity, i.e. opportunity to choose the balance of emission 
change or productivity change they want to achieve. Alcock 
and Hegarty (2011) explored this for lamb producers at 
Cowra in NSW and found that most of the management 
technologies considered reduced emissions intensity by 10–20%, 
comparing the worst with the best practises. However, if 
breeding stock are managed to be more productive (e.g. by 
superior nutrition leading to greater product/breeder) and 
more feed efficient (e.g. greater product per kilogram DMI), 
the farmer is faced with the challenge. The challenge is 
whether to increase stock numbers to utilise surplus feed 
and gain extra product (for potentially reduced emissions 
intensity, but usually greater net enterprise emissions), or 
reduce stock numbers to maintain previous product output 
with smaller enterprise net emissions (and emissions intensity), 
and so make land available for other uses (e.g. tree plantings, 
conservation zones). Although the first option is most likely to 
be adopted by most producers; with the right balance of 
incentives, including a price on carbon, the latter option 
may have a pathway to adoption via the potential for carbon 
sequestration in ungrazed land, thus further reducing net 
GHG emissions by the enterprise. The means by which 
management of the animal and feed can be changed to 
provide this opportunity are described below. 

Modifications of the on-farm production system itself 
are particularly desirable in reducing livestock emissions, 
because in general they use known and available technologies, 
do not require new chemical products, and are associated with 
increased animal productivity co-benefits. These changes 
include intensification made possible through improved 
basal feed (Pinares-Patino˜ et al. 2009), improved reproduc-
tive performance (Alcock and Hegarty 2011) and/or 
improved metabolic efficiency of the animal that could be 
achieved by breeding (Nkrumah et al. 2006) or improved 
health (Eckard et al. 2010). To decrease CH4 emissions from 
a grazing enterprise, all these strategies are most effectively 
applied to decrease the quantity of feed consumed (and 
therefore the quantity of CH4 produced) by the breeding 
females in the flock or herd. By either reducing daily emissions 
from this group or increasing the commercial product they 
yield, the emissions intensity is reduced. Consequently, 
they provide significant flexibility for the land manager to 
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rearrange their land allocation and stock numbers around 
personal priorities for emission and productivity targets 
(Alcock and Hegarty 2011). Significantly, there is a slightly 
different balance of management for productivity or emissions 
in breeding and slaughter animals. For offspring raised for 
meat production, maximising intake and growth to reach 
weaning and slaughter points sooner can reduce both 
emissions intensity and total enterprise emissions. However, 
because breeding females are retained in the herd, even 
during unproductive phases (until culling for on-going lack 
of fertility, age or other reasons), optimising, rather than 
maximising, intake to achieve maximal reproductive perfor-
mance is likely to be more efficient economically, and from 
an emissions perspective. 

Changing the nutritional management of
breeding animals

Nutritional management by which the reproductive efficiency 
of grazing ruminants can be improved focus on reducing age 
at first joining, inter-calving or inter-lambing interval, and 
increasing weaning rates, especially per kilogram of breeding 
female. 

Age at first joining

Animals intended for breeding are not contributing 
economically until they deliver their first progeny, but are 
always consuming feed and generating GHG emissions. 
Therefore, one way to increase efficiency in breeding flocks 
and herds is to reduce the unproductive time before animals 
are first joined. This has substantial impacts in reducing the 
emission intensity of milk (Christie et al. 2016) and of 
lamb, as well as increasing profitability (Alcock et al. 2015; 
Tocker et al. 2020). It also increases the speed of genetic 
gain (Newton et al. 2017). Timing of onset of puberty is 
determined by liveweight, rather than the rate or timing of 
liveweight gain, and so is subject to post-weaning nutritional 
control (Bruinje et al. 2021). Dietary energy restriction can 
delay the onset of puberty by inhibiting the frequency of 
pulsatile release of lutenising hormone (LH) (Schillo et al. 
1992). Within breeds, this appears to be driven by body-
weight and thus metabolic fuel availability. Adipose fat is 
an endocrine tissue that affects reproduction through the 
secretion of leptin (Schillo et al. 1992; D’Occhio et al. 2019). 
A higher post-weaning plane of nutrition is associated with 
increasing plasma leptin concentrations, which stimulate 
the hypothalamus kisspeptin release and maturation of 
gonadotropin-releasing hormone (GnRH) expressing neurons 
with the onset of puberty, and ultimately release of LH 
(D’Occhio et al. 2019). Other proposed mechanisms for the 
effect of nutrition on the onset of puberty include the action 
of ghrelin (elevated during negative energy balance) and 
insulin-like growth factor-1 (mediated via insulin–glucose 

homeostasis) to regulate activity of the GnRH receptors in 
the brain (D’Occhio et al. 2019). Research for determining an 
optimal rate of post-weaning growth to enable early joining 
and maximising lifetime breeding productivity in cattle has 
shown that results from more recent work (Le Cozler et al. 
2008) diverge from those of early research (Short and 
Bellows 1971). This suggests that with genetic progress, the 
optimal nutritional strategies to achieve early joining may 
have changed and need re-assessment (Pitchford et al. 
2018; Walmsley et al. 2018). 

Simulations of reducing age of joining in Merino ewes from 
a baseline of 19 months of age to 7 months (Alcock and 
Hegarty 2011; Alcock et al. 2015) resulted in a removal of a 
cohort of unproductive, but still methane-emitting, maiden 
ewes. Despite lower lambing rates in this cohort, the resulting 
increase in lamb weaned per female and per hectare reduced 
the emissions intensity of both wool and lamb by ~5% and 
increased overall enterprise profit by 6% (Alcock et al. 
2015). However, to achieve reduction in enterprise-scale 
emissions, this additional profit must be at least partially 
foregone by a reduction in stocking rate. When stocking rates 
in the simulation were adjusted for a profit-neutral outcome, 
reductions in absolute emissions of 0.26 and 0.36 t CO2-eq/ha 
were observed for yearling and weaner enterprises respec-
tively (Alcock et al. 2015). Alcock et al. (2015) calculated a 
break-even carbon price of more than AUD$150/t CO2-eq for 
a yearling enterprise (AUD$37/ha) and AUD$267/t CO2-eq 
(AUD$94/ha) for a weaner enterprise to account for the 
opportunity cost of the reduced stocking rate in the profit-
neutral scenario. 

Similarly, in beef production, joining at a younger age was 
shown to be economically preferable to joining at later ages, 
irrespective of any culling for age rule (Nunez-Dominguez 
et al. 1991). In rangeland beef production systems (a small 
part of NSW beef production), early joining may have less 
benefit than it has in sheep production systems. A case study 
analysis (Cullen et al. 2016) of an enterprise that joined 
Brahman heifers at 360 kg at 1 year of age, instead of a 
typical enterprise that joins heifers at 360 kg at 2 years of 
age, increased liveweight sold-off property by 8%. If the 
same animal equivalent (AE) stocking rate was maintained, 
emissions intensity of liveweight gain (LWG) was reduced 
by 7%, but enterprise emissions were maintained. By taking 
advantage of the increased productive efficiency of earlier 
joining, and reducing AEs stocked so that liveweight weaned 
and/or sold was maintained, both emissions intensity and 
total enterprise emissions were reduced by ~ 7%. The gross 
margin outcomes of both strategies were ~10% higher 
than was baseline. More modelling is needed to assess the 
economic and emission impacts of improving age at first 
joining in temperate beef production systems. There is likely 
to be little scope for reducing GHG in dairy production 
systems from improved breeding (Lean and Moate 2021). 

Unless replacement females are at a suitable weight to 
achieve successful early joining, then joining underweight 
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young animals will be disadvantageous to the economic yield 
of the herd or flock (Farrell et al. 2019) and it would be 
expected that the same adverse effect would diminish 
emission-intensity gains due to the need for supplementary 
feeding of lighter weight dry females that either fail to get 
pregnant or fail to rebreed due to weight and condition. 

The implications of retaining the more-productive females 
in the flock/herd is two-fold for emissions. (1) The number of 
non-productive females being reared to mating age is reduced, 
resulting in less CH4 produced by animals not contributing to 
marketable livestock and (2) the non-productive (but CH4-
producing) rearing period of replacements becomes a lower 
proportion of the average lifetime of breeders in the herd/ 
flock, so the emissions intensity over the lifetime is reduced. 

Fecundity management

Measuring improvement in reproductive rate of multiparous 
females is complex as there are several indices available, 
all with their own issues of inaccuracy. The best measures 
of fertility account for the efficiency with which females 
reconceive and successfully raise their offspring. Weaning 
rate is the most comprehensive single index, because it 
takes into account reproductive losses from mating to lamb 
weaning, although it does not account for maternal deaths. 
In terms of emissions intensity and enterprise-scale emissions, 
breeder-herd efficiency indices, such as those for beef 
production systems which measure kilograms of weaner 
liveweight weaned per 400 kg of breeding female are the 
most useful measures of breeding efficiency, due to the 
breeder liveweight impacts on CH4 emissions. 

The nutritional driver of reproductive performance in 
multiparous females is not bodyweight, as for maidens, 
but body condition score (BCS), which is an indication of 
subcutaneous fat. BCS at calving, rather than change in 
BCS, is the single most important determinant of resumption 
of ovarian cycling post-partum (D’Occhio et al. 2019). It is 
possible that mechanisms of the effect of nutrition and 
adipose tissue mass are acting on the resumption of ovarian 
cycling in the post-partum female similar to those acting in 
the pubertal maiden (D’Occhio et al. 2019). 

Development of BCS depends on mature bodyweight. In 
this respect, selection for females with lower maintenance-
energy requirements, (i.e. lower mature bodyweight), can 
achieve productivity efficiencies concurrent with lower 
enterprise emissions and emissions intensity. However, 
larger frame size is associated with faster LWG and thus 
improved emissions intensity of lamb and beef, and so it is 
important not to compromise the efficiency of offspring for 
slaughter, by the use of low-liveweight terminal sires. 

Consistent with reducing emissions intensity, increasing 
the reproductive output can also be achieved by targeted 
nutritional interventions to ovulation. Specifically, this includes 
ovulation stimulation by a nutritional pulse (flushing; Banchero 
et al. 2021). The greatest nutritional impact on ovulation is 

overall energy intake, although short-term supplementation 
with either rumen degradable protein or rumen undegraded 
protein can also increase ovulation rate (Banchero et al. 2021) 

Harrison et al. (2014) showed that increasing fecundity 
reduced emissions intensity from 9.3 to 7.3 t CO2-e/t clean 
fleece weight plus liveweight, in a sheep breeding enterprise. 
There is scope for strategic supplements to be used by 
breeding flocks in NSW to increase reproductive output and, 
consequently, change herd/flock structure and reduce emis-
sions intensity (Almeida et al. 2021; Almeida and Hegarty 
2021). The same principles apply in dairy where extended 
lactations (within a year) reduce emissions intensity of milk 
production (Lehmann et al. 2014). Doran-Browne et al. 
(2015) found that the economic impact of extending 
productive life was greater in the dairy herd than in wool-
growing enterprises. 

Basal-feed management change

Improving quality of available forage

The key consequences of improved pasture quality occur 
through animal productivity impacts such as faster body 
and or wool growth, shorter lifespan for slaughter animals, 
higher breeder BCS, so reduced age to joining and period to 
the subsequent conception. This reduces the need for replace-
ment animals and perhaps sustains longer persistence in the 
herd/flock. Therefore, improving the basal feed supports 
the implementation of other improved animal management 
strategies. 

The importance of DMD (and thus intake) in the National 
Inventory method for sheep CH4 emissions has implications 
for the estimated emissions of enterprises undertaking 
basal-feed quality improvement. DMD has strong positive 
correlations with DMI in temperate pastures, but this relation-
ship varies among seasons (Arnold and Dudzinski 1967; 
Michell 1973), with, for example, low residuals in winter 
(r = +0.81) but significantly higher when considered over all 
seasons (r = +0.48) (Michell 1973). For many improvements 
in pasture species and management, increases in digestibility 
are also concurrent with improved leaf density or plant 
morphology for grazing, which increases bite size and thus 
intake, separate from the effects of DMD (Stobbs 1973). 

Very simplistically and without considering known 
feed-forward effects of improved DMD, as the National 
Inventory largely does not permit this, we simulated the 
effect of increased DMD for sheep in NSW by using the 
National Inventory Report (https://www.industry.gov.au/ 
data-and-publications/national-greenhouse-accounts-2019/ 
national-inventory-report-2019) framework. In the inventory, 
NSW seasonal values for DMD are assumed to be 75%, 61%, 
64%, and 72% for spring, summer, autumn and winter respec-
tively, for sheep only. Simulating the effect of improved 
digestibility, National Inventory seasonal DMD values 
were increased by 5% before insertion of values in the of 
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Minson and McDonald (1987) equation, (qm = 0.00795 
DMD – 0.0014 – DMD expressed as a percentage). This showed 
that the estimated CH4 output of the sheep industry would 
increase by 6% (considering 100% adoption rate), as a 
consequence of increase in DMI by grazing sheep (Fig. 3). 
When Hegarty et al. (2010) simulated the effect of increasing 
DMD and DMI on daily CH4 production per head, the response 
was almost linear, although the rate of increase in CH4 

production was lower for high DMD diets than for low to 
moderate DMD diets. However, this present simulation does 
not include DMD effects on average DWG in sheep, and, so, 
does not reflect the reality of the biological system where 
pasture and animals are interdependent. 

Pasture quality, DMI, animal productivity and daily CH4 

production are inter-related and cannot be simplistically 
described (Hegarty et al. 2010). Hegarty et al. (2010) 
simulated the effect of a 30 kg Border–Leicester lamb offered 
an ad libitum roughage diet of increasing DMD on LWG, DMI, 
daily CH4 production, and emissions intensity. As DMI 
increased, daily CH4 production and LWG responded almost 
linearly. The CH4 efficiency of consumed energy (i.e. daily 
CH4 production per unit of metabolisable-energy intake; 
MEI) was highest for high-DMD diets, and for the same MEI, 
daily CH4 emissions will decrease with an increasing DMD 
because less DMI is required to achieve the same MEI. The 
implication of these responses is that increasing DMI, regard-
less of DMD, increases LWG and thus reduces emissions 
intensity of each kilogram of liveweight. However, at any 
given DMI, increased DMD will reduce emissions intensity 
(Hegarty et al. 2010). 

Fig. 3. Sensitivity of total methane production per year in New South
Wales (NSW) to a 5% improvement in dry-matter digestibility of
pastures across all seasons, on the basis of the National Inventory
report calculations (compared with the baseline methane production
(https://www.industry.gov.au/data-and-publications/national-greenhouse-
accounts-2019/national-inventory-report-2019).

However, in practice, improved digestibility may not lift 
feed intake, as a result of pasture availability or plant 
morphology and density. For example, in a tropical pasture 
grazed at 14 days of regrowth, compared with 28 days of 
regrowth, organic-matter (OM) digestibility improved to 
0.67 from 0.70 respectively, but the consequent changes in 
plant morphology caused steer bite size, and thus OM 
intake, to decline from 4.81 to 4.22 kg OM/day (Boval 
et al. 2007). In a situation where DMD increases without an 
increase in DMI, the realised impact is likely to be no change 
in total CH4 produced (driven by the steady DMI), but likely to 
be accompanied by an increase in growth (driven by the 
increasing metabolisability of DM consumed); thus, the 
emissions intensity of the meat, wool or milk produced would 
decline, but the per animal emissions would not decrease. 
Therefore, the responsiveness of the set of equations used 
in the framework must be improved before the producer 
could benefit from carbon credit income from improving 
pasture digestibility. While this lack of responsiveness is not 
apparent in the National Inventory, reflecting its insensitivity, 
these system-effects are the basis for most progress in 
intensification of ruminant production. There must be a 
coming together of basal-feed change and animal number or 
management change, for a grazing system to maintain some 
sort of equilibrium and thus to be sustainable. This coming 
together is exemplified in the push to improve the basal 
feed and intensify animal agriculture, and is discussed below. 

Including methane suppressing forages in grazing
systems

No matter what grazing-based production system is in use, 
there is scope to change not only the general nutritional 
value of the forage, but to introduce specific CH4-suppressing 
forages. More than 200 000 plant secondary compounds, or 
phytochemicals, have been identified (Hartmann 2007), 
and some have anti-methanogenic proprieties, including 
tannins, essential oils, and saponins (Durmic et al. 2022). In 
many cases, these may possess anti-nutritional characteristics, 
and so the aim is to find the equilibrium between the 
beneficial CH4 abatement and the optimum nutrient utilisa-
tion. This balance is particularly complex to attain as the 
composition and quantity of phytochemicals varies widely 
within natural sources. Plants that have elevated levels of 
condensed tannins offer the greatest forage-based possibility 
of reducing enteric CH4 production while maintaining or 
increasing animal performance. These include Lotus spp., 
(Banik et al. 2013), Desmanthus (Suybeng et al. 2019) and 
the more tropically adapted Leucaena leucocephala and 
Gliricidia septum, browses that are all at commercial or 
near-commercial stages of availability. Desmanthus is suited 
to the warm non-frosting regions of NSW. Similarly, the tree 
legume L. leucocephala is also suited to these areas and can 
deliver commercially significant CH4 mitigation (Tomkins 
et al. 2019), but is not currently recommended in NSW due 
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to its propensity to become a weed. While other forages have 
shown promise (e.g. Biserrula pelecinus, Eremophila glabra; 
Durmic et al. 2014), they are not close to commercial release. 

One of the key advantages of leguminous CH4-active 
legumes is the additional dietary protein they supply, which 
can be seasonally important in drier regions such as northern 
and north-western NSW. Thus, the advantage of these 
CH4-inhibitory forages is they not only suppress emissions 
chemically, but can affect total diet digestibility and DMI, 
and thus have a feed-forward catalytic role in stimulating 
animal liveweight and, therefore, move the system to both 
lower emissions and higher productivity as long as the cost 
to establish and maintain these forages in vast farm lands is 
managed. 

Supplementing CH4-supressing additives

Several feed supplements can be fed to ruminants and result 
in lower CH4 emissions [e.g. oils, Asparagopsis, nitrate, 
ionophores, bacteriocins, a wide array of phytochemicals, 
3-nitrooxypropanol (3-NOP), etc.; Almeida and Hegarty 2021]. 
The adoption of feed strategies can contribute to Australia’s 
efforts to reduce GHG emissions as well as create opportunity 
to producers in earning Australian carbon credit units 

(ACCUs). In this regard, we simulated the CH4 mitigation 
potential within NSW by using two feed additives commer-
cially available (phytochemicals and nitrate) and two novel 
feed additives in the process of entering the market 
(Asparagopsis and 3-NOP). Previously reported abatement 
potential of these feed additives was used as the basis of 
the state-wide CH4-mitigation quantification, considering 
the ruminant population in NSW (Fig. 4). 

A previously published meta-analysis by Almeida et al. 
(2021) that quantified the mitigation potential of several 
methane suppressing additives clustered tannins, essential oils, 
and saponins into phytochemicals comprising in 33 different 
studies (17 with sheep, 7 with dairy cattle and 9 with beef 
cattle). We tested whether the CH4 mitigation differed 
among sheep, dairy and beef cattle and our results showed 
no evidence of such difference [P = 0.59; this analysis was 
performed using the MIXED procedure of SAS, ver. 9.4, 
SAS/STAT, SAS Institute Inc., Cary, NC, USA, considering 
study as a random effect; please refer to Almeida et al. 
(2021) for further details]; thus, we used the CH4 reduction 
reported by Almeida et al. (2021) to perform the simulations 
(i.e. 11.0 ± 1.84%). Depending on the adoption rate, 
phytochemicals can mitigate up to 9.30% of enteric-CH4 
emissions in NSW, according to our simulation. To simulate 

Fig. 4. Monte Carlo-based simulation of total CH4 production per year in New South Wales (NSW) to a 10%,
30%, 60%, and 90% adoption rate of CH4-supressing feed additives, on the basis of the National Inventory report
calculations (compared with the baseline CH4 production (https://www.industry.gov.au/data-and-publications/
national-greenhouse-accounts-2019/national-inventory-report-2019). Monte Carlo techniques (Fan et al. 2002)
were used to estimate the uncertainty of CH4 output, considering the variation of the CH4 abatement
reported by Almeida et al. (2021) and assuming a fixed ruminant population.

1467

https://www.industry.gov.au/data-and-publications/national-greenhouse-accounts-2019/national-inventory-report-2019
https://www.industry.gov.au/data-and-publications/national-greenhouse-accounts-2019/national-inventory-report-2019
www.publish.csiro.au/an


A. K. Almeida et al. Animal Production Science

the abatement potential of nitrate, we used 24 different 
studies (5 with sheep, 6 with dairy cattle and 13 with beef 
cattle). We found that the CH4 mitigation achieved when 
feeding nitrate to sheep was greater than that observed in 
cattle (beef or dairy) (26.8 ± 4.96% vs 12.4 ± 4.23%; 
P = 0.03). Thus, we simulated the State’s CH4 production 
considering 12.4% reduction on CH4 output when feeding 
nitrate to cattle, and 26.8% CH4 reduction in sheep. This 
difference might be due to the nature of the basal diets 
used in different ruminant species. Our simulation showed 
that using adoption rates from 10% to 90%, the methane 
abatement increased from 1.76% to 15.8% (Fig. 4). 

Although feed additives such as nitrate and phytochem-
icals do not provide the greatest methane abatement of the 
feed additives, they are readily available supplements at a 
low cost. Additionally, nitrate has a co-benefit as a dietary 
non-protein nitrogen source and has the advantage of an 
existing emission reduction fund (ERF) method supple-
menting grazing cattle with nitrate, enabling producers to 
access the ACCUs market. One may note that upper limits of 
nitrate supplementation must be respected to avoid nitrate 
toxicity. Therefore, these feed additives potentially offer 
greater likelihood of adoption. 

The 3-NOP effect on CH4 production was simulated using 
information of 14 different studies (none with sheep, seven 
with dairy cattle and seven with beef cattle). We have 
found evidence that CH4 abatement differs between dairy 
and beef cattle (P = 0.71); thus, we used the CH4 reduction 
reported by Almeida et al. (2021) for all ruminant animals 
to perform the simulations (i.e. 29.0 ± 3.11%). Our results 
showed that the potential CH4 abatement achieved when 
feeding 3-NOP to ruminants varied from 2.83% to 25.5%, 
considering adoption rates ranging from 10% to 90%. Only 
four studies using Asparagopsis were available (one with 
sheep, one with dairy cattle and two with beef cattle); thus, 
we considered its CH4 mitigation in ruminants in general, as 
published by Almeida et al. (2021) (i.e. CH4 mitigation of 
52.3 ± 6.03%). Feeding Asparagopsis to ruminants showed 
the greatest CH4 mitigation, potentially reducing State’s CH4 

output from 5.23% up to 47.1%, depending on the adoption rate. 
One might note that adoption is a determinant of magni-

tude in a State’s CH4 mitigation. In turn, adoption is affected 
by the price of the product compared with the return to the 
producer, which might be in ACCUs and/or productivity 
gains (co-benefits). The CH4 quantification potential of a 
combination of feed additives is a gap yet to be explored in 
future studies. 

Intensification of livestock systems

The impact of intensification on enteric emissions has been 
regularly displayed in the decline in milk emission intensity 
that has been reported globally (Niu et al. 2018; Naranjo 
et al. 2020). As with improved reproductive performance, 
intensifying production creates opportunity to raise more 

stock on the same land area or keep the same number of 
animals, but on a reduced area of land, while keeping product 
output unchanged. With ‘systems thinking’ this gives the land 
manager an opportunity to take some land out of grazing 
should they wish, perhaps for reforestation or carbon-
sequestration activities; this choice will depend on balance 
of environmental and economic priorities for the livestock 
manager. While the long-term impact of this has been 
modelled for sheep enterprises in NSW (Alcock et al. 2015), 
further system modelling on the merit of land-use change 
associated with increased intensity, animal efficiency and 
reproductive performance is required especially for beef. 
Although difficult to quantify, trees planting can also be 
integrated into livestock production systems in ways that it 
may result in increased production (i.e. through providing 
shade and shelter) and other co-benefits (i.e. improved 
biodiversity and soil and water health). 

Supplementation of grazing livestock with energy 
concentrates (i.e. grain) can be predicted to increase CH4 
production per day, in line with the responses to increasing 
MEI described by Hegarty et al. (2010), above. However, 
the effects of partial substitution of supplement for basal 
forage (Dove 2002) mean that total DM and OM intake will 
increase but forage intake will decrease, with only marginal 
effect on total daily CH4 production or emissions intensity 
(Boadi et al. 2002). Improving digestible OM and ME intake 
by increasing pasture DMD may have an influence on 
CH4 emissions, although this has not yet been tested. The 
current methods for predicting CH4 emissions of grazing 
sheep account only for expected pasture digestibility, not 
the whole diet including supplements. However, improved 
metabolisability of the whole diet will increase the LWG 
function, and thus the emissions estimate, by the national 
inventory methods. The national inventory methods may 
need to be adjusted to account for grain supplementation if 
the body of evidence can be strengthened, but this 
evaluation should extend beyond inventory to also include 
life-cycle analysis of emissions. 

What is clear is that managing the animals through grazing, 
genetic selection, culling and early breeding decisions, 
together with managing the basal feed in its composition, 
quality and potentially CH4-suppressing swards, have great 
potential to mitigate emissions both in absolute terms (kg 
CH4/day) and in emission intensity of the livestock products. 
The enterprise-scale outcome is subject to matching decisions 
on total livestock kept and land area used. The efficacy of 
combinations of subsets of this suite of decisions is evident 
in assessment in the dairy industry (Beukes et al. 2010), 
sheep industry (Alcock et al. 2015) and in explaining differ-
ences in greenhouse outputs and profitability of diverse beef 
enterprises (Harrison et al. 2016). These positive responses in 
emissions to animal and feed management are seen across 
globally diverse feeding/grazing systems (Gerssen-Gondelach 
et al. 2017), even when the assessment is made on a basis of 
life-cycle analysis. This gives confidence that a consistent 
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positive set of mitigation outcomes can be achieved in grazing 
systems across NSW. 

Simulations of NSW impacts of improved
reproductive efficiency

Lean and Moate (2021) estimated that the potential scope to 
make improvements to reproductive efficiency in southern 
Australian beef production was moderate (compared with 
high in northern production systems). Simulations were run 
to assess the effect of an increase in reproductive rate on 
emissions and emissions intensity. Baseline NGGI values of 
average NSW beef cow (85%) and sheep (125%) fertility 
were assumed. Simulations examined the emission impacts 
of improving reproductive rates of sheep and beef cattle by 
5% and 10%. The effects of raising the reproductive rate of 
breeders on NSW emissions, on the basis of the state ruminant 
population (ABS 2018), were modelled considering adoption 
rates of 50%, 60%, 70% and 80%. 

The simulations were run reflecting a constant output of 
saleable animals, meaning that as reproductive rate increased, 
the number of breeding females in the state decreased. 
Specifically, improving fertility by 5% was predicted to result 
in a reduction in the State current emissions by 1.56%, 1.87%, 
2.18% and 2.50% for 50%, 60%, 70% and 80% adoption rates 
respectively (Fig. 4). Similarly, with improving fertility by 
10%, the expected CH4 abatement would be 2.97%, 3.56%, 
4.16%, and 4.75% of current emissions for 50%, 60%, 70% 
and 80% adoption rates respectively (Fig. 5). 

In the present simulation, the main driver in CH4 

abatement (Mt/year) was the reduction in breeding females, 
while the product output was kept the same. Using a different 
approach, in a case study modelling cattle properties in dry 
inland regions, an improved reproduction gave a 22–28% 
decline in GHG emissions intensity (t CO2-e/t liveweight 

Fig. 5. Sensitivity of total methane production from ruminants per
year in New South Wales (NSW) to 5% and 10% fertility improvement
in sheep and beef cattle, comparedwith the baselinemethane production.

sold), largely due to higher weaning rates, that would likely 
increase enterprise CH4 production due to increased 
number of animals (Cullen et al. 2016). This improved farm 
profitability by up to AUD$62 000 due to more liveweight 
sold from the same number of breeding females. 

Nutritional and other strategies to reduce CH4 emissions 
are unlikely to be adopted unless profitability can be maintained 
or improved, even when government or other private sector 
schemes offer financial reward (such as the Emissions 
Reduction Fund or the Carbon Farming Initiative; Alcock et al. 
2015). Thus, nutritional strategies that result in proven 
productivity improvements may offer greater likelihood of 
adoption than for dietary additives that have modest or neutral 
productivity co-benefits, but greater CH4 yield abatement. 

Reducing ewe joining age is a consistently profitable 
management strategy, and so offers good likelihood of 
adoption (Alcock et al. 2015) if prioritised in policies. 
Managing beef breeders to a high plane of nutrition during 
pregnancy and lactation is also consistently more profitable 
than is poor nutrition at this time (Alford et al. 2009). 

Simulations of the stocking rate, gross margin and 
enterprise CH4-emission effects of pasture improvement in a 
100 ha Merino wool enterprise showed that pasture improve-
ment from a native pasture baseline allows for increased 
pasture yield/ha, and consequent increased stocking rate 
and decreased emissions intensity on the improved pasture. 
Thus enterprise CH4 emissions can be reduced by taking 
advantage of the increased productivity efficiency and 
reducing flock size and grazing a smaller area of improved 
pasture only (24 ha), while maintaining no change in 
enterprise gross margin. However, the likelihood of farm 
managers adopting such a strategy is small. Far more likely 
is that producers will wish to realise the productivity 
dividend of pasture improvement. Accordingly, Alcock and 
Hegarty (2006) simulated the gross margin impacts of partial 
pasture improvement (43 ha), with subsequent increase in 
stocking rate, productivity and emissions intensity, so that 
total enterprise emissions were equal to those from grazing 
the 100 ha of unimproved pasture with a smaller, less 
efficient flock. The result was an almost doubling of gross 
margin, for the same enterprise CH4 emissions, and less 
than half of the land area grazed. These simulations do 
not take into consideration a price on carbon or value of 
ungrazed land for carbon sequestration offset payments, but 
show that with the right balance of incentives, a win–win 
outcome is possible for farm income and for CH4 emissions, 
which will be necessary to achieve widespread adoption. 

Conclusions

Changes to on-farm nutritional management of livestock and 
feed base provide multiple and interacting opportunities 
to reduce total enteric emissions, emission intensity, and 
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either increase productivity or change the land area used and 
number of stock required, subject to producer priorities and 
financial incentives. 

The systems-scale nutritional strategies to reduce methane 
emissions in NSW breeder herds and flocks described in 
this review hinge on two approaches, i.e. either increasing 
nutritional supply by improvements to the basal feed, or 
reducing nutritional demand, through reducing the contri-
bution of non-productive females or by reducing the 
maintenance requirements of females to be productive. 
Improvements to nutrient supply, by basal-feed improve-
ments, increased digestibility, liveweight and rate of LWG, 
and are assumed to increase intake, and hence actually 
contribute to increased CH4 emissions per animal and per 
enterprise, without commensurate decreases in herd or flock 
numbers, although they do improve emissions intensity of 
animal products. Management strategies targeted to reduce 
the proportion of the breeder herd or flock not contributing 
to production (reducing age at first joining, increasing 
reconception rate and weaned weight and rate) will result 
in increased emissions per animal and per enterprise, due to 
the increased demand for feed energy from milk production, 
although emissions intensity of weaners turned off will be 
reduced. In contrast, management strategies that reduce 
nutritional maintenance requirements, such as selection for 
smaller females with lower maintenance requirement in 
self-replacing herds and flocks, can reduce both emissions 
intensity and total enterprise emissions, without changes to 
animal numbers. 

In recent years, prices for animal protein have become 
uncoupled from supply as global demand has increased to a 
point where export markets seem to have an almost infinite 
capacity to absorb Australian production in excess of domestic 
demand (MLA 2019). As a result, it is likely that improve-
ments in productivity or productive efficiency (and emissions 
intensity) will not result in market signals to producers to 
reduce flock and herd sizes. Instead, producers will be 
incentivised to take advantage of the efficiency dividend 
and increase herd size, thus increasing total emissions at 
enterprise and regional scale. To achieve a reduction in 
grazing livestock contributions to State and National 
Inventories of GHG emissions by production-system changes, 
producers will need competitive economic incentives to 
intensify production and then re-allocate land to carbon-
sequestration uses, thus reducing gross and net enterprise 
emissions and inventory. Further investigation is required 
of combinations of different strategies for CH4 mitigation by 
using a systemic approach, to inform policy recommendations. 
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