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ABSTRACT

Context. Genome-wide association studies (GWAS) and meta-analyses can be used to detect
variants that affect quantitative traits. Multi-breed GWAS may lead to increased power and
precision compared with within-breed GWAS. However, not all causal variants segregate in all
breeds, and variants that segregate in multiple breeds may have different allele frequencies in
different breeds. It is not known how differences in minor allele frequency (MAF) affect multi-
breed GWAS and meta-analyses. Aims. Our aim was to study the impact of differences in MAF
at causal variants on mapping power and precision. Methods. We used real imputed sequence
data to simulate quantitative traits in three dairy cattle breeds. Causal variants (QTN) were
simulated according to the following three scenarios: variants with a similar MAF in all breeds,
variants with a lower MAF in one breed than the other, and variants that each only segregated
in one of the breeds. We analysed the simulated quantitative traits with three methods to
compare mapping power and precision: within-breed GWAS, multi-breed GWAS and meta-
analysis. Key results. Our results indicated that the multi-breed analyses (multi-breed GWAS
or meta-analysis) detected similar or more QTN than did within-breed GWAS, with improved
mapping precision in most scenarios. However, when MAF differed between breeds, or variants
were breed specific, the advantage of the multi-breed analyses over within breed GWAS
decreased. Regardless of the type of QTN (similar MAF in all breeds, different MAF in different
breeds, or only segregating in one breed), multi-breed GWAS and meta-analyses performed
similar or better than did within-breed GWAS, demonstrating the benefits of multi-breed
GWAS. We did not find large differences between the results obtained with the meta-analysis
and multi-breed GWAS, confirming that a meta-analysis can be a suitable approximation of a
multi-breed GWAS.Conclusions. Our results showed that multi-breed GWAS and meta-analysis
generally detect more QTN with improved precision than does within-breed GWAS, and that even
with differences in MAF, multi-breed analyses did not perform worse than within-breed GWAS.
Implications. Our study confirmed the benefits of multi-breed GWAS and meta-analysis.
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Introduction

Genome-wide association studies (GWAS) and meta-analyses can be used to detect variants 
that affect quantitative traits (Bouwman et al. 2018; Jiang et al. 2019) and to select 
predictive markers that can improve the accuracy of genomic prediction (Brøndum et al. 
2015; VanRaden et al. 2017; Xiang et al. 2019). Multi-breed GWAS with sequence 
data may lead to increased power and precision compared with within-breed GWAS 
(van den Berg et al. 2016a). The inclusion of predictive sequence markers selected from 
GWAS can be especially beneficial for across-breed (Raymond et al. 2018a) and multi-
breed genomic prediction (Raymond et al. 2018b). Furthermore, variants selected from 
a multi-breed GWAS can result in higher prediction accuracies than variants selected 
from within-breed GWAS (van den Berg et al. 2016b). However, not all causal variants 
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segregate in all breeds (Raven et al. 2014; Kemper et al. 2015), 
and variants that segregate in multiple breeds may not 
have the same allele frequency in each breed. Furthermore, 
some regions may contain multiple causal variants that do 
not always segregate in all breeds. It is not known how 
differences in minor allele frequency (MAF) affect multi-
breed GWAS and meta-analyses. Therefore, we simulated 
scenarios where causal variants had similar or different MAF 
in three dairy cattle breeds, and compared detection power 
and precision of within-breed GWAS, multi-breed GWAS 
and multi-breed meta-analysis. 

Materials and methods

Genotypes

We used real genotype data for 66 739 Holstein (HOL), 13 398 
Jersey (JER) and 5536 Australian Red (RED) individuals, 
including imputed sequence data and Illumina BovineHD 
BeadChip genotypes (HD). A detailed description of the impu-
tation pipeline has been provided in van den Berg et al. 
(2022). Animals were genotyped at various single-nucleotide 
polymorphism (SNP) array densities. First, animals imputed 
with a low-density SNP panel were imputed to the Illumina 
Bovine 50K panel by using a mixed-breed imputation 
reference set, containing 14 722 HOL, JER and RED animals. 
Subsequently, all animals were imputed from 50K to HD, 
with a reference population of 2700 animals (HOL, JER and 
RED), and HD to whole genome-sequence level, by using 
a reference population of 5490 Bos taurus cattle from 
Run8 of the 1000 Bulls Genome Project (Daetwyler et al. 
2014; Hayes and Daetwyler 2019). Imputation up to HD 
was performed using Fimpute v.3 (Sargolzaei et al. 2014) 
and sequence imputation was performed using Minimac4 
(Das et al. 2016) and Eagle v.2.4.1 (Loh et al. 2016). All 
imputation was undertaken using multi-breed reference 
populations, because previous studies (Bouwman and 
Veerkamp 2014; Brøndum et al. 2014; Pausch et al. 2017) 
have shown that multi-breed imputation tends to result in a 
very similar or slightly higher imputation accuracy than does 
within-breed imputation. For this study, we used sequence 
variants only on Chromosome 1 and the 616 807 HD variants 
on Chromosomes 1–29. After removing sequence variants 
with an imputation r2 computed by Minimac4 lower than 
0.4, there were 1 277 974 sequence variants retained on 
Chromosome 1, with a minor allele frequency (MAF) larger 
than 0 (for all breeds considered together). We used GCTA 
(Yang et al. 2011) to make a genomic relationship matrix 
(GRM) of the HD genotypes and performed a principal-
component analysis (PCA) to check the breed identity present 
in the dataset. Based on the PCA (Supplementary material 
Fig. S1), we removed HOL with PC1 > 0.0001 or PC2 > 0.005, 
JER with PC1 < 0.0055 or PC2 > 0.005 and RED with 

PC1 > 0.004 or PC2 < 0.005. After this, there were 66 710 
HOL, 13 291 JER and 5385 RED remaining. 

Simulation

To simulate the causal variants, or quantitative-trait 
nucleotides (QTN), we first divided Chromosome 1 in five 
causal regions of 11.6 Mb each, each separated by 20 Mb 
windows. The causal regions were located between 10 565 483 
and 22 158 125 bp, 42 158 125 and 53 750 767 bp, 73 750 767 
and 85 343 409 bp, 105 343 409 and 116 936 051 bp and 
136 936 051 and 148 528 693 bp. We simulated 100 QTN 
by randomly selecting HD variants from Chromosomes 2–29, 
and 5 or 15 QTN on Chromosome 1 according to the 
following scenarios (Fig. 1): 

� Similar MAF: 5 QTN on Chromosome 1, one per causal 
region, with similar MAF in all breeds: 
� Common: MAF > 0.01 in all breeds 
� Low: MAF 0.001–0.01 in all breeds 
� Rare: MAF > 0–0.001 in all breeds 

� Different MAF: 5 QTN on Chromosome 1, one per causal 
region, QTN were either rare (MAF > 0–0.001) or fixed 
(MAF = 0) in one breed and had a MAF > 0.001 in the 
other two breeds: 
� RareH: rare (MAF > 0–0.001) in HOL, and MAF > 0.001 

in JER and RED 
� RareJ: rare (MAF > 0–0.001) in JER, and MAF > 0.001 in 

HOL and RED 
� RareR: rare (MAF > 0–0.001) in RED, and MAF > 0.001 

in HOL and JER 
� FixedH: fixed (MAF = 0) in HOL, and MAF > 0.001 in 

JER and RED 
� FixedJ: fixed (MAF = 0) in JER, and MAF > 0.001 in HOL 

and RED 
� Breed-specific: 15 QTN on Chromosome 1, three per 

causal region, one segregating only in HOL (MAF > 0.001 
in HOL, and MAF = 0 in JER and RED), one only in JER 
(MAF > 0.001 in JER, and MAF = 0 in HOL and JER) 
and one only in RED (MAF > 0.001 in RED and MAF = 0 
in HOL and JER). 

Phenotypes based on the selected QTN were simulated 
using the ‘simu-qt’ and ‘simu-causal-loci’ functions in GCTA 
(Yang et al. 2011), with a heritability of 0.1, 0.3 and 0.5. 
Each scenario was repeated 10 times. In all scenarios, the 
simulated effect was the same in all breeds. In the different 
MAF scenarios, we did not simulate a scenario where QTN 
were fixed in RED and had a MAF > 0.001 in HOL and JER, 
because insufficient variants fulfilled this MAF requirement. 
We randomly selected 5385 HOL and 5385 JER (same 
sample size as REDs) in each scenario to equalise detection 
power across breeds, so that the GWAS results were not 
confounded by very different breed proportions. 
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Fig. 1. Overview of simulated scenarios. Causal regions are indicated in yellow. Scenario 1, similar minor allele frequency (MAF): five
quantitative trait nucleotides (QTN) on Chromosome 1 (QTN1-5), one per causal region, with similar MAF in all breeds (common (>0.01),
low (0.001–0.01) or rare (>0–0.001)); Scenario 2, different MAF: five QTN on Chromosome 1 (QTN1-5), one per causal region, QTN
were rare (MAF > 0–0.001) in or fixed (MAF = 0) in one breed and had a MAF > 0.001 in the other breeds; Scenario 3, breed-specific:
15 QTN on Chromosome 1, three per causal region, one segregating only in Holstein (H1-5), one in Jersey (J1-5), and one in Australian
Red (R1-5).

Association mapping methods

For each repeat, we performed a GWAS within each breed, a 
multi-breed GWAS combining the three breeds and a meta-
analyses using the METAL software (Willer et al. 2010) that 
combined the three within breed GWAS (METAL). GCTA 
(Yang et al. 2011) was used for the within breed and multi-
breed GWAS, fitting a GRM in all GWAS, and a breed effect 
in the multi-breed GWAS. For each GWAS, a GRM was 
constructed following Yang et al. (2011) on the basis of all 
autosomal HD variants and all individuals included in that 
GWAS (i.e. the within-breed GWAS used a GRM constructed 
using only genotypes of individuals of that breed, whereas the 
multi-breed GWAS used a multi-breed GRM). For the meta-
analysis, we used the weighted Z-score model in METAL 
(Willer et al. 2010), using the P-value, direction of effect and 
sample size from the within-breed GWAS as input parameters. 
Subsequently, we did a conditional and joint analysis (COJO; 
Yang et al. 2012) on the summary statistics of the within-
breed and multi-breed GWAS and the meta-analysis, to 
estimate the number of independent QTN signals. 

Mapping-method evaluation

For the evaluation of the mapping methods, we considered the 
sequence variants only on Chromosome 1. All variants with a 

P-value ≤ 5 × 10−8 were declared significant. Quantitative 
train loci (QTL) intervals were constructed by first ranking 
all variants from smallest and largest P-value, and then 
grouping variants within 0.5 Mb distance of each other and 
a −log10(P) value of at least 2/3rd that of the most 
significant variant in the interval. The interval size is then 
defined by the minimum and maximum position of all 
variants included in the QTL interval. 

To assess the three mapping methods (within-breed GWAS, 
multi-breed GWAS and meta-analysis), we evaluated the 
results on the basis of the following criteria: 

� nQTN_SIGN = the number of significant QTN 
� nQTN_QTL = the number of QTN located in QTL intervals 
� nQTN_COJO = number of QTN selected by COJO 
� size_QTL = the size of QTL intervals 
� distQTN_TOP = the distance between each QTN located in 

a QTL interval and the most significant variant in that QTL 
interval 

� distQTN_COJO = the distance between each QTN and the 
closest COJO variant (only if a COJO variant was selected 
in the causal region in which the QTN was located) 

� propQTL_false = the proportion of QTL intervals that did 
not contain a QTN 

� nCOJO_causal = the number of variants selected by COJO 
per causal region 
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� nCOJO_window = the number of variants selected by COJO 
per window between causal regions 

For the within-breed GWAS, nQTN_SIGN, nQTN_QTL and 
nQTN_COJO were calculated as the number of unique QTN 
detected in the three within-breed GWAS (i.e. if the same 
QTN was significant both in HOL and in JER, it counted 
only as 1, but if one QTN was significant in HOL and a 
different QTN in JER, it counted as 2). Similarly, nCOJO_ 
causal and nCOJO_window represent the number of unique 
variants detected by COJO per causal region (or window); 
hence, if a COJO selects a different variant in HOL than in 
JER in the same region (window), nCOJO_causal (nCOJO_ 
window) equals 2. When comparing between two analyses 
(i.e. within-breed GWAS and multi-breed GWAS), distQTN_ 
TOP was calculated only if there was a QTL interval 
containing the QTN in both analyses. Similarly, distQTN_ 
COJO was estimated only when, in both analyses, COJO 
selected a variant in the window in which the QTN was 
simulated. 

Results

In most scenarios, the multi-breed GWAS and meta-analysis 
both detected similar or more QTN than did within-breed 
GWAS, with more precise mapping. The overall trend was 
the same regardless of heritability. Therefore, here we show 
more details for the results obtained with a heritability of 
0.3, and full results, including the scenarios with 
heritabilities of 0.1 and 0.5, can be found in Supplementary 
material Tables S1–S3. 

Similar MAF

When the simulated QTN had a similar MAF in the three 
breeds, the multi-breed GWAS and meta-analysis both 
resulted in improved power (higher nQTN_SIGN, nQTN_QTL) 
and precision (smaller size_QTL and distQTN_TOP) compared 
with within-breed GWAS (Fig. 2). For example, with a 
heritability of 0.3 and a low MAF, the within-breed GWAS 
detected 1.3 QTN in the QTL intervals, with an average 

Fig. 2. Summary of GWAS results for simulated QTN that had either common, low or rare minor allele
frequencies in all breeds. Plots show (a) number of significant QTN, (b) number of significant QTN in QTL
intervals, (c) size of QTL intervals, (d) distance between QTN and most significant variant in QTL interval and
(e) proportion of QTL intervals that do not detect a QTN. The trait heritability was 0.3. There were three
different analyses: within-breed GWAS (WB), multi-breed GWAS (MB) and meta-analysis (METAL).
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Fig. 3. Summary of GWAS results for simulatedQTNwith common, low or rare minor allele frequencies
in all breeds. Plots show (a) number of QTN selected by COJO, (b) distance between QTN and closest
COJO variant, (c) number of COJO variants in causal regions, and (d) number of COJO variants in
windows between causal regions. The trait heritability was 0.3.

WB_HOL WB_JER WB_RED(a) (b) (c) 5 

0.0e+00 5.0e+07 1.0e+08 1.5e+08 0.0e+00 5.0e+07 1.0e+08 1.5e+08 0.0e+00 5.0e+07 1.0e+08 1.5e+08 
Position (bp) Position (bp) Position (bp) 

MB METAL(d) (e) 

0.0e+00 5.0e+07 1.0e+08 1.5e+08 0.0e+00 5.0e+07 1.0e+08 1.5e+08 
Position (bp) Position (bp) 

Fig. 4. Manhattan plots of GWAS results for simulated QTN with common, low or rare minor allele frequencies in all breeds. Plots show
(a) within-breed Holstein (WB_HOL), (b) within-breed Jersey (WB_JER), (c) within-breed Australian Red (WB_RED), (d) multi-breed (MB),
and (e) meta-analysis (METAL). The trait heritability was 0.3. The red line indicates a significance threshold of P= 5× 10−8, blue circles indicate
simulated causal variants, red dots indicate variants in QTL regions, and orange dots variants selected by COJO.
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interval size of 548 Kb, while the multi-breed GWAS and 
meta-analysis detected 1.8 QTN and 1.7 QTN, with an 
average interval size of 306 and 292 Kb respectively. For 
scenarios with a heritability of 0.1 and 0.3, the proportion 
of false positives (propQTL_false) was lower in the multi-
breed GWAS and meta-analysis than within breed, while 
there was no consistent difference with a heritability of 0.5 
(Table S1, Fig. 2). While nQTN_COJO was larger in the 
multi-breed GWAS and meta-analysis than within breed, 
there was no consistent difference for distQTN_COJO, 
nCOJO_causal and nCOJO_window (Table S1, Fig. 3). Fig. 4 
shows details of a repeat of the scenario where all QTN had 
a common MAF, with a heritability of 0.3, where none of 
the within breed GWAS detected any significant variants, 
while the multi-breed GWAS and meta-analysis detected 2 
QTN in QTL intervals, and 1 QTN was selected by COJO. 

Different MAF

In the different MAF scenarios, the multi-breed GWAS 
resulted in improved power (higher nQTN_SIGN, nQTN_QTL 

and nQTN_COJO), while there was no consistent difference 
between the within-breed GWAS and meta-analysis (Figs 5, 6, 
Table S2). For example, with a heritability of 0.3 and QTN 
with a rare MAF in one breed, nQTN_SIGN equalled 1.77 in 
the multi-breed GWAS, 1.47 in the within breed GWAS and 
1.37 in the meta-analysis. In the multi-breed and meta-
analysis precision improved (smaller size_QTL and distQTN_ 
TOP) compared with within breed (Fig. 5), whereas the 
additional COJO analyses resulted in no consistent difference 
in precision observed for distQTN_COJO, nCOJO_causal 
and nCOJO_window (Fig. 6, Table S2). While differences 
were small, propQTL_false was slightly smaller in the meta-
analysis than in either of the GWAS (Fig. 5). Fig. 7 shows 
an example of one replicate of the rareJ scenario, 
highlighting QTN with a MAF of 0.004, 0.0008 and 0.008 
in HOL, JER and RED respectively. This QTN was detected 
in the within-breed GWAS for both HOL (P = 2.0 × 10−10) 
and RED (P = 5.9 × 10−20), but was not significant in JER 
(P = 8.3 × 10−6). The multi-breed GWAS or meta-analysis 
resulted in decreased P-values for the causal variant, down 

Fig. 5. Summary of GWAS results for simulated QTN that were rare or fixed in one breed but had a larger
minor allele frequency in the other two breeds. Plots show (a) number of significant QTN, (b) number of QTN in
QTL intervals, (c) size of QTL intervals, (d) distance between QTN and most significant variant in QTL interval,
and (e) proportion of QTL intervals that do not detect a QTN. The trait heritability was 0.3 and three different
analyses were implemented: within-breed GWAS (WB), multi-breed GWAS (MB) and meta-analysis (METAL).
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Fig. 6. Summary of GWAS results for simulated QTN that were rare or fixed in one breed and had a larger
minor allele frequency in the other two breeds. Plots show (a) number ofQTN selected by COJO, (b) distance
between QTN and closest COJO variant, (c) number of COJO variants in causal regions, and
(d) number of COJO variants in windows between causal regions. The trait heritability was 0.3.
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Fig. 7. Manhattan plots of GWAS results for a simulated QTN that had a lower minor allele frequency in Jersey than in Holstein and Red.
The plots include (a) within-breed Holstein (WB_HOL), (b) within-breed Jersey (WB_JER), (c) within-breed Australian Red (WB_RED),
(d) multi-breed GWAS (MB) and (e) meta-analysis (METAL). The trait heritability was 0.3. The red line indicates a significance threshold of
P = 5 × 10−8, blue circles indicate simulated causal variant, red dots indicate variants in QTL regions, and orange dots variants selected by COJO.
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Fig. 8. Summary of GWAS results for breed-specific QTN, showing (a) number of significant QTN,
(b) number of QTN in QTL intervals, (c) size of QTL intervals, (d) and distance between QTN and most
significant variant in QTL interval, and (e) proportion of QTL intervals that do not detect a QTN. The
trait heritability was 0.3.

Fig. 9. Summary of GWAS results for breed-specific QTN, showing (a) number of QTN
selected by COJO, (b) distance between QTN and closest COJO variant, (c) number of
COJO variants in causal regions, and (d) number of COJO variants in windows between
causal regions. The trait heritability was 0.3 and analyses included within-breed GWAS (WB),
multi-breed GWAS (MB) and meta-analysis (METAL).
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5
 

 

Fig. 10. Manhattan plots of GWAS results for three breed-specific QTN. The plots include (a) within-breed Holstein (WB_HOL),
(b) within breed Jersey (WB_JER), (c) within breed Australian Red (WB_RED), (d) multi-breed GWAS (MB) and (e) meta-analysis
(METAL). The trait heritability was 0.3. The red line indicates a significance threshold of P = 5 × 10−8, blue circles indicate simulated
causal variant, red dots indicate variants in QTL regions, and orange dots variants selected by COJO.

to 3.2 × 10−33 and 9.7 × 10−31 respectively. Furthermore, 
while the QTN was the most significant variant in all of the 
analyses, there were nine variants with the same P-value in 
the within-breed JER and RED GWAS, and only three in the 
HOL GWAS and multi-breed and meta-analyses. 

Breed specific

When causal variants were specific to one breed only, there 
were only minimal, inconsistent differences in nQTN_ 
SIGN, nQTN_QTL, nQTN_COJO, distQTN_COJO and between 
within-breed and multi-breed analyses (Figs 8, 9, Table S3). 
Smaller values of size_QTL, distQTN_TOP and propQTL_ 
false were obtained with the multi-breed GWAS and meta-
analysis than within breed (Figs 8, 9), and nCOJO_causal 
and nCOJO_windows were larger in the meta-analysis than 
in either the within- or multi-breed GWAS (Fig. 9). Fig. 10 
shows a replicate for one QTL region where the two different 
QTN segregating in JER and RED were detected both by the 
within-breed GWAS, multi-breed GWAS and meta-analysis. 
Visually, the JER and RED QTN appeared to be part of 
the same QTN in the multi-breed GWAS and meta-analysis. 

The third simulated QTN segregating in HOL was not 
detected in any of the analyses. 

Discussion

Our results showed that multi-breed GWAS and meta-analysis 
tend to detect more QTN with improved precision than does 
within-breed GWAS, if QTN have a similar MAF. This is in 
agreement with previous studies in dairy cattle with real 
production phenotypes (van den Berg et al. 2016a, 2020; 
Marete et al. 2018; Teissier et al. 2018), which suggested 
that multi-breed analyses had a higher power and precision 
to detect some QTL than did within-breed analyses. However, 
in real data, the causal variants are seldom known a priori, so 
we cannot know what proportion of causal variants are shared 
or what their MAF is in different breeds. In different MAF and 
breed-specific scenarios, the advantage of the multi-breed 
analyses over within-breed GWAS decreased. When QTN 
segregate only in one breed, a multi-breed GWAS or meta-
analysis did not lead to an increase in power for that QTN, 
explaining the limited advantage of multi-breed analyses 
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over within-breed analyses in the breed-specific scenarios. In 
theory, precision might still be improved because LD is 
conserved over shorter distances across breeds than within 
breed (De Roos et al. 2008). This may occur when the QTN 
is not segregating in one breed, but variants nearby that are 
in high LD with the QTN in another breed in which it 
segregates, do segregate in the first breed. In this scenario, 
the variants near the QTN may be highly significant in 
the within-breed GWAS of the breed in which the QTN 
segregates, but not in the other breed. Consequently, the 
P-values of those variants close to the QTN would become 
less significant in the multi-breed GWAS, resulting in a 
narrower peak. Indeed, the size of QTL intervals and distance 
between each QTN located in a QTL interval and the most 
significant variant in that QTL interval were smaller for the 
multi-breed GWAS and meta-analysis than for the within-
breed GWAS, even in the breed-specific scenarios. Because 
the majority of causal variants (QTN) in dairy cattle are 
unknown, we cannot verify how realistic the simulated 
scenarios are. However, there are examples of shared QTN 
across breeds (Gautier et al. 2007), as well as QTN in beef 
cattle that are in and around the gene encoding myostatin 
but are completely different mutations (Bellinge et al. 2005). 
On the basis of the allele frequencies of the sequence variants 
observed in the breeds in our simulation (Fig. S2), there are 
substantially more variants (44%) that had a similar MAF 
in all three breeds, than variants that were rare (15%) or 
fixed (11%) in one breed but not in the other two breeds, 
or were breedspecific (9%). Hence, it seems realistic that 
some QTN are likely to fall into each of these categories. 
Regardless of the type of QTN, multi-breed GWAS and 
meta-analyses performed similar or better than within-breed 
GWAS, demonstrating the benefits of multi-breed GWAS. 

A previous study using real data showed that unbalanced 
sample size between different breeds contributing to a 
multi-breed GWAS appeared to result in a GWAS being 
dominated by the breed with largest sample size (van den 
Berg et al. 2016a), with QTL detected within breeds with 
smaller population sizes overshadowed in the multi-breed 
GWAS by a nearby QTL detected in the breed with largest 
population size. In our study, we wanted to investigate the 
effect of MAF independent of differences in sample sizes. In 
reality, it will be generally preferable to maximise mapping 
power and use the maximum dataset. The weights used in a 
meta-analyses could be used to account for differences in 
sample size. A further study could investigate how differences 
in MAF at the QTN in combination with differences in sample 
size affect a multi-breed GWAS and meta-analysis. 

Our simulation assumed that QTN have the same effect in 
all breeds. However, given the small number of confirmed 
causal mutations, we do not know whether QTN generally 
have the same effect in different breeds or not. QTN involved 
in gene × gene or gene × environment interactions, may have 
different effects in different breeds, which would reduce the 
power of multi-breed GWAS. Results from a multi-breed 

GWAS of fat percentage and protein percentage in dairy 
cattle showed that the majority of QTL had the same 
direction of effect in all within-population GWAS they were 
detected (van den Berg et al. 2020). This suggests that, while 
the magnitude of effects may differ among breeds, QTN are 
likely to at least have the same direction of effect in multiple 
populations of the same species. 

A caveat of this study is that we included all QTN in the 
GWAS. In reality, even when using sequence data, it is 
likely that at least a portion of the QTN are not included in 
the GWAS, for example, because of filtering on allele 
frequency or imputation accuracy, or because most sequence 
datasets exclude larger structural variants. Because LD is 
conserved over shorter distances across breeds than within 
breeds (De Roos et al. 2008), not having the QTN in the 
dataset and relying on LD between the QTN and other 
variants nearby may reduce the potential advantage of 
multi-breed analyses over within-breed analyses. 

Overall, we did not find large differences between the 
results obtained with the meta-analysis and those from 
multi-breed GWAS, which is in agreement with previously 
reported results for real milk production traits in dairy 
cattle (van den Berg et al. 2016a; Teissier et al. 2018). 
Hence, a meta-analysis can be a suitable approximation of a 
multi-breed GWAS when within-breed GWAS summary 
statistics are available, but not the phenotypes and genotypes 
required for a multi-breed GWAS. Another advantage of 
the meta-analysis is the reduced computational demand. 
The multi-breed GWAS took between 7 and 53 h to complete 
(running on 20 threads), whereas the time taken for the 
meta-analysis included 40–90 min for each within-breed 
GWAS (on 20 threads) and less than a minute for the meta-
analysis itself. 

COJO is an attractive method to reduce the number of 
significant variants selected by GWAS and have an estimate 
of the number of independent signals affecting a quantitative 
trait (Yang et al. 2012). In our simulation study, detection 
power was insufficient to detect all QTN, which is realistic 
for quantitative traits where many effects are small and 
require very large sample sizes for detection (Yengo et al. 
2022), especially with the lower heritabilities. Consequently, 
in this situation, COJO tended to underestimate the number 
of independent signals. Our results also highlighted that 
the variants selected by COJO are not necessarily the QTN. 
This can be explained by the extensive LD found in dairy 
cattle (De Roos et al. 2008), resulting in many sequence 
variants associated with the same QTL region. Differences 
in imputation accuracy and association with other QTN 
may result in variants near the QTN being more significant 
than the QTN. Consequently, COJO might select the more 
significant variant rather than the true QTN. Hence, when 
undertaking a GWAS to select potential causal variants for 
further validation studies, it is likely to be better to select 
several variants per QTL region rather than restrict the 
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selection to the most significant variant per peak or variants 
selected by COJO. 

Conclusions

Our results showed that multi-breed GWAS and meta-analysis 
generally detect more QTN with improved precision than do 
within-breed GWAS, particularly if QTN have a similar MAF. 
However, when allele frequencies differed among breeds, or 
variants were breed-specific, the advantage of the multi-breed 
analyses over within-breed GWAS decreased. Regardless of 
the type of QTN, multi-breed GWAS and meta-analyses 
performed similarly or better than did within-breed 
GWAS, demonstrating the benefits of multi-breed GWAS. 
Additionally, our results obtained with the meta-analysis 
and multi-breed GWAS were generally not very different; 
thus, a meta-analysis can be a suitable approximation of a 
balanced multi-breed GWAS when within-breed GWAS 
summary statistics are available or reduced computational 
demand is important. 

Supplementary material

Supplementary material is available online. 
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