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Response surface optimised photocatalytic degradation and 
quantitation of repurposed COVID-19 antibiotic pollutants in 
wastewaters; towards greenness and whiteness perspectives 
Heba T. ElbalkinyA, Ola M. El-BoradyB, Sarah S. SalehA,* and Christine M. El-MaraghyA  

Environmental context. The consumption of repurposed antibiotics increased due to the management of COVID-19, which in 
turn led to their increased presence in wastewater and potential environmental effects. This change has created a greater need for 
their analysis and treatment in different environmental water. This work presents a safe, low-cost method for analysing and treating 
water samples to ensure their suitability for human and animal use.  

ABSTRACT 

Rationale. Certain antibiotics have been repurposed for the management of infected COVID-19 
cases, because of their possible effect against the virus, and treatment of co-existing bacterial 
infection. The consumption of these antibiotics leads to their access to sewage, industrial and 
hospital effluents, then to environmental waters. This creates a need for the routine analysis and 
treatment of water resources. Methodology. Detection and quantitation of three repurposed 
antibiotics: levofloxacin (LEVO), azithromycin (AZI) and ceftriaxone (CEF) were studied in different 
water samples using LC-MS/MS methods employing a C18 column and a mobile phase consisting of 
80% acetonitrile/20% (0.1% formic acid in water) after solid phase extraction on Oasis HLB Prime 
cartridges. Real water samples were treated with synthesised graphitic carbon nitride (g-C3N4) to 
remove the three types of antibiotics from contaminated water under experimental conditions 
optimised by response surface methodology, using Box–Behnken experimental design. Results. The 
analytical method was validated in the concentration range of 10–5000 ng mL–1 for the three drugs. 
The removal percentages were found to be 92.55, 98.48 and 99.10% for LEVO, AZI and CEF, 
respectively, using synthesised g-C3N4. Discussion. The analytical method was used for the 
estimation of the three cited drugs before and after their removal. The method was assessed 
using ComplexGAPI as a greenness tool and the RGB 12 algorithm as a whiteness model. The 
method was applied for the analysis and treatment of real water samples before and after their 
treatment. It proved to be simple, low-cost and environmentally sustainable.  

Keywords: azithromycin, Box–Behnken, ceftriaxone, ComplexGAPI, g-C3N4, levofloxacin, 
liquid chromatography, mass spectrometry. 

Introduction 

In the year 2019, the world was exposed to the first pandemic, COVID-19, and the number 
of infected cases exceeded 400 million by the end of 2022 (WHO Coronavirus (COVID-19) 
2023). To face this plight, several approaches were adopted, such as preparing effective 
vaccines and inventing new molecules to treat the virus. Unfortunately, these approaches 
went on for some time with no immediate solution. Meanwhile, certain antibiotics were 
repurposed for the management of infected cases, because of their possible effect against the 
virus, and treatment of co-existing bacterial infection. These classes of antibiotics included 
fluoroquinolones, macrolides and cephalosporins (Yacouba et al. 2021; Thapa et al. 2022). 
Concerns about repurposed antibiotic consumption increased; accordingly, they found their 
way through sewage, industrial and hospital effluents into receiving environment waters 
(Hayden et al. 2022; Wang et al. 2022). There is an environmental risk of bioaccumulation 
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of antibiotics to levels which would cause bacterial resistance, 
endocrine disturbance and genotoxic effects (Elbalkiny et al. 
2020; Elbalkiny and Yehia 2022; Tantawy et al. 2023). 

The selected antibiotics for this study were azithromycin 
(AZI), levofloxacin (LEVO) and ceftriaxone (CEF). AZI 
belongs to the checklist of substances to be monitored 
throughout the European Union in the field of water policy 
(Directive 2015/495/EC of 20 March 2015) as it poses a 
significant risk to the aquatic environment (Vella 2015). It 
was repurposed for patients with COVID-19 at the beginning 
of the pandemic due to its antiviral and immunomodulatory 
activity; however, AZI’s role in COVID-19 is still unclear 
(Parnham et al. 2014). LEVO is the first-line therapeutic 
agent for the management of respiratory tract infections 
due to its safety profile and high concentration in the lungs 
(Karampela and Dalamaga 2020). It continues to appear in 
the aquatic environment because of its insufficient metaboli
sation in human bodies (Felis et al. 2020). CEF is prescribed 
to treat COVID-19 patients because of the possible complica
tions of bacterial superinfections which have been previously 
reported in the case of other viral respiratory infections 
(Giacomelli et al. 2021). It accumulates in water and causes 
ecological, environmental and health issues (Guo et al. 2015). 

In the last few years, LEVO, AZI and CEF have been ana
lysed either separately or with other antibiotics, in different 
types of wastewater samples by applying liquid chromato
graphic methods coupled with solid phase extraction (SPE) 
(Diwan et al. 2013; Opriş et al. 2013; Yu et al. 2016; Aydin 
et al. 2019; Younes et al. 2019; Serra-Compte et al. 2021;  
Sharma et al. 2022). AZI and LEVO were simultaneously 
detected in wastewater samples after SPE using liquid chro
matography (LC) analysis (Yasojima et al. 2006; Golovko et al. 
2014). The three drugs (LEVO, AZI and CEF) were quantified 
among other antimicrobials in water and livestock excreta 
using liquid chromatography with tandem mass spectrometry 
(LC-MS/MS) (Gao et al. 2016). Their presence in water could 
lead to the development of antibiotic resistance. As such there 
is great interest in their elimination. Unfortunately conven
tional methods are not successful for their removal in waste
water, therefore advanced methods are required, such as 
adsorption or an advanced oxidation process. 

Different advanced methods have been reported for the 
removal of antibiotics from water by an adsorption process: 
for LEVO (Ullah et al. 2019; Li et al. 2020b; Gopal et al. 2022;  
El-Maraghy et al. 2023), AZI (Balarak et al. 2021; Upoma 
et al. 2022; Ameen et al. 2023) and CEF (Karungamye et al. 
2022; Mohammadi Nezhad et al. 2023), and biological treat
ments (Tian et al. 2019; de Ilurdoz et al. 2022). The applica
tion of these methods is limited due to their high cost, low 
degradation efficiency, second-pollution and complicated 
technology (Jiang et al. 2012). Photocatalytic degradation is 
one of the most promising advanced oxidation processes 
(AOPs) that depends on the oxidation of the pollutants 
through the production of highly reactive radicals formed 
upon exposure of a photocatalyst to a UV or a solar/visible 

light source yielding, by mineralisation, less harmful products 
such as water, carbon dioxide and intermediates (Dewil et al. 
2017). Photocatalytic degradation has the advantages of 
being eco-friendly, simple, economic, nontoxic, highly stabile 
and possesses excellent degradation efficiency (Jiang et al. 
2012). Literature reviews have revealed the use of nanoparti
cles as photocatalysts for the removal of the three studied 
antibiotics using different metal nanocomposites such as sil
ver, zinc, iron and titanium oxide nanoparticles (Shokri et al. 
2016; Naraginti et al. 2019; Sayadi et al. 2019; El-Maraghy 
et al. 2020; Hashemi et al. 2020; Mehrdoost et al. 2021; Salesi 
and Nezamzadeh-Ejhieh 2022), graphene composites (Li et al. 
2020a), and functionalised iron magnetic nanocatalysts 
(Shokri et al. 2016; Naraginti et al. 2019; Sayadi et al. 
2019; El-Maraghy et al. 2020; Li et al. 2020a; Goulart et al. 
2021; Gulen et al. 2021; Guo et al. 2021; Hu et al. 2021;  
Mehrdoost et al. 2021; Shen et al. 2021; Zhang et al. 2021;  
Salesi and Nezamzadeh-Ejhieh 2022; Abdullah et al. 2023), as 
shown in Supplementary Table S1. 

One of the photocatalysts that has lately experienced a 
renaissance as a highly active metal-free photocatalyst 
is graphitic carbon nitride (g-C3N4), which renders 
materials nontoxic and biocompatible (Zhao et al. 2018;  
AttariKhasraghi et al. 2021; John and Thomas 2022). It dis
plays significant blue photoluminescence between 430 and 
550 nm at room temperature with onset of the bandgap 
adsorption at around 420 nm. Moreover, g-C3N4 has bandgap 
of 2.7 eV which make it suitable as a visible light-active photo- 
responsive photocatalyst with a conductive band of −1.1 eV 
and valence band of +1.6 eV, respectively (Ong et al. 2016). 
The OH· radical dot and holes are the two main reactive 
species in g-C3N4 that are responsible for the photocatalytic 
degradation of the studied drugs (Raizada et al. 2020). So, it is 
considered an economic, green and safe photocatalyst that 
requires only solar radiation as a driving force to conduct the 
catalytic reaction. Therefore, g-C3N4 has been used as a photo
catalyst for the degradation of organic pollutants (Alias et al. 
2020; Attarikhasraghi et al. 2021; John and Thomas 2022). 

This study aimed to detect and quantify the repurposed 
antibiotics LEVO, AZI and CEF in different water samples coin
ciding with their reported treatment of COVID-19 infections 
using LC-MS/MS detection. The water samples were extracted 
using SPE and treated using the synthesised green and safe 
photocatalyst g-C3N4 under experimental conditions opti
mised by response surface methodology. The whole pro
cess is assessed in terms of Green Analytical Chemistry 
(GAC) and White Analytical Chemistry (WAC). 

Experimental 

Analysis methodology 

Instrument and reagents 
The analysis was performed using a Shimadzu LC-MS/MS 

with a pump (model LC-20AD). The detection was performed 
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using a triple quadrupole mass spectrometer (API 4000) 
equipped with an electrospray ionisation (ESI) source using 
multiple reaction monitoring (MRM) in positive ion mode. 
An autosampler was used with a sampling speed of 15 µL s–1 

(Shimadzu SIL20A) and a pump (Shimadzu LC20AD). The 
data acquisitions were performed using Analyst 1.6.3 soft
ware. Oasis HLB Prime cartridges (500 mg/6 mL, Waters, 
MA, USA) were used for sample treatment. 

For characterisation of g-C3N4, a JEOL JEM-2010 trans
mission electron microscope, a Shimadzu UV-2450 spectro
photometer, a Malvern Zetasizer Nano ZS90 analyser, a 
Shimadzu RF5301PC spectrofluorometer, an FTIR spectro
photometer (JASCO spectrometer), a Shimadzu XRD 6100 
diffractometer, a Jeol model JSM-IT100 scanning electron 
microscope, and a Quantachrome TouchWin™ (ver. 1.2) 
surface analyser were used. 

A reference standard of LEVO (99.54 ± 0.67) was kindly 
supplied by the Sanofi pharmaceutical company (Egypt). A 
reference standard of ceftriaxone sodium (99.58 ± 0.56) was 
kindly supplied by EIPICO pharmaceutical company (Egypt). 
Methanol, acetonitrile (HPLC grade), formic acid, melamine 
(≥ 99%), a reference standard of azithromycin dehydrate 
(99.78 ± 0.73), and erythromycin as an internal standard 
(IS) were purchased from Sigma–Aldrich, USA. Sodium 
hydroxide and hydrochloric acid (33%) were obtained 
from ADWIC (Egypt). The purity of the reference standards 
was checked using the official British Pharmacopoeia (BP) 
methods (British Pharmacopoeia Commision 2013). 

Chromatographic and mass conditions 
The separation and identification were performed using 

an Agilent C18 column (4.6 mm × 50 mm, 4.6 µm particle 
size). The mobile phase consisted of 80% acetonitrile/20% 
(0.1% formic acid in water) in isocratic elution mode deliv
ered at a flow rate of 0.8 mL min–1. The column temperature 
was set at 30°C and the amount of sample injected was 5 µL. 
A mass spectrometer (API 4000) equipped with a triple 
quadrupole was used and the detection was acheived 
using positive ion electrospray ionisation (ESI+), with air 
as a nebuliser gas and nitrogen as an auxiliary curtain and 
collision gas. The gas temperature was set at 300°C. The 
MRM transitions for LEVO, AZI, CEF and erythromycin (IS), 
and mass spectrometric parameters, are listed in Table 1. 

Construction of calibration curves and method 
validation 

Stock standard solutions of LEVO, AZI, CEF and erythro
mycin (IS) were prepared in methanol to a concentration of 
100 μg mL–1. Freshly prepared working solutions for the 
three drugs were prepared by dilution of the stock solution 
using the same solvent. The calibration curves for the three 
drugs were prepared using concentrations of 10–500 ng mL–1 

in triplicate for each drug. A calibration curve was plotted 
for each drug relating the prepared concentrations versus the 
peak area ratio of the corresponding drug to that of the IS. 
The three calibration curves were plotted, and regression 
equations were computed. Validation of the analytical 
method was performed as per ICH guidelines including the 
parameters of linearity, range, accuracy and precision, spec
ificity, limit of quantification (LOQ) and limit of detection 
(LOD) (ICH Harmonisation Tripartite Guideline 2005). 

Water sample preparation and preconcentration 
In 250-mL amber glass bottles, 200 mL of water samples 

were collected from different locations and stored at −15°C 
for 10 days till extraction and analysis. These water samples 
were filtered through Whatman No. 41 and 0.7-µm filters 
prior to the preconcentration process, at the original pH 
(7–7.5) using an Oasis HLB Prime cartridge (500 mg/6 mL). 
Loading the cartridges was done at a flow rate of 1 mL min–1 

using ultra-water samples for a sufficient contact time to allow 
targeted antibiotics to adsorb on the sorbent material. The 
sorbent was washed with 10 mL of water and then dried under 
vacuum and eluted with methanol (3 × 10 mL). The solvent 
was evaporated under nitrogen and the water samples were 
analysed according to the chromatographic conditions. 

Synthesis and characterisation of graphitic 
carbon nitride (g-C3N4) 

Synthesis of g-C3N4 
The pristine g-C3N4 powder was synthesised in a one-step 

process by thermally polymerising melamine (Svoboda et al. 
2019) following the literature procedure with a simple 
modification: 5 g of melamine was weighed and placed in 
a porcelain crucible, which was then covered and heated in 
a muffle furnace for 4 h in an air atmosphere at 550°C with a 
heating rate of 2°C min. The resulting, yellow-coloured 

Table 1. The selected LC-MS/MS parameters for the quantification of LEVO, AZI and CEF.          

Precursor 
(Da) 

Product 
(Da) 

Dwell 
(ms) 

Cone (V) Collision 
energy 

(V) 

Ion 
mode   

LEVO 362.1 318.3 300.0 25.0 25.0 ESI+ 

AZI 749.6 83.0 300.0 30.0 25.0 ESI+ 

CEF 555.2 396.0 300.0 30.0 20.0 ESI+ 

Erythromycin (IS) 734.6 158.0 300.0 30.0 25.0 ESI+   
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product was kept at room temperature for later investiga
tions and use. 

Characterisation of g-C3N4 
The morphological characteristics were analysed using a 

transmission electron microscope, operated at anaccelerat
ing voltage of 200 kV, and included a Gatan digital camera 
(Model Erlangshen ES500). A Zeta sizer set to 25°C was used 
to determine the zeta-potential. The optical features of the 
solid sample were recorded using a spectrophotometer 
with 1 cm quartz cells. The g-C3N4 photoluminescence 
(PL) emission spectra were captured utilising a spectrofluo
rometer. The structural information and functional groups 
were identified using an FTIR spectrophotometer in the 
4000–400 cm−1 range. X-Ray diffraction data were collected 
using a diffractometer with CuKa1 radiation (k = 1.54056 A), 
a 2θ range of 10–80, an operating data voltage of 40 kV, and a 
current of 30 mA. Energy-dispersive X-ray spectrometry 
(EDX) was utilised using a scanning electron microscope 
(SEM). The BET surface area of the sample was calculated 
employing a multipoint Brunauer–Emmett–Teller (BET) 
method using adsorption data relative pressure (P/P0) in the 
range of 0.05–0.9. The particle pore size distribution was 
measured by the Barrett–Joyner–Halenda (BJH) method 
using adsorption data, both methods were performed on a 
Quantachrome Nova instrument running TouchWin™ soft
ware (ver. 1.2). 

Photocatalytic degradation experiment 

Screening and optimisation of photocatalytic 
degradation 

The treatment of the studied antibiotics was undertaken 
using synthesised g-C3N4 nanosheets under a LED lamp 
(35 W) which produced visible light irradiation. Screening 
experiments were performed under variable conditions 
including pH ranges, initial concentrations of the three 
drugs, dose of g-C3N4, agitation rate, and time intervals in 
the dark to obtain an adsorption–desorption equilibrium, 
where one condition was changed while the others were 
kept constant. Two millilitres of each suspension was 
taken and centrifuged to remove the photocatalyst powders 
before measurement. The sample was analysed using the 
developed LC-MS/MS procedure. The screening experiments 
revealed the factors that will be included in the experimen
tal design. 

Box–Behnken experimental design (BBD), three-levels 
and three-factors, was employed for assigning the optimum 
conditions for maximising the removal of the three selected 
antibiotics, LEVO, AZI and CEF as dependent variables, 
against the dose of g-C3N4 (0.2–1.0 g L–1), pH (5–9) and 
time (30–90 min) as independent variables. Each variable 
was represented in three levels, high (+1), medium (0) and 
low (−1). Fifteen experimental points were performed 
including replications of the central points in randomised 

experimental order, as shown in Supplementary Table S2. 
ANOVA data analysis was performed to determine the lack 
of fit, and evaluate other parameters including the effects of 
quadratic, linear and variables’ interaction, where the model 
was verified by response surface methodology (RSM). 

Application to synthetic and real water samples 
Optimum experimental conditions were applied to three 

types of water. The first type of water sample was a labora
tory distilled water spiked with equal amounts of the three 
cited pharmaceuticals (500 ng mL–1). The second one was a 
real water sample free from pharmaceutical pollutants 
(clean real water) and spiked with equal amounts of the 
three cited pharmaceuticals (500 ng mL–1). The third were 
contaminated real water samples collected from the Nile 
River and industrial effluents collected from two cities 
named 6th of October and 10th of Ramadan. This approach 
allowed monitoring the degradation under realistic working 
conditions compared to the laboratory experiments. 

Results and discussion 

LC-MS/MS quantitation of water pollutants 

LC-MS/MS analysis and validation sheet 
Several mobile phase components with different ratios 

(methanol, acetonitrile, water and acidified water with for
mic acid) were trialled to elute symmetrical peaks with 
accepted tailing factors for the three drugs and IS. A C18 
column and a mobile phase consisting of 80% acetonitrile/ 
20% (0.1% formic acid in water) in isocratic elution mode at a 
flow rate of 0.8 mL min–1 gave optimum results as formic acid 
helped in the positive ionisation of the drugs. Regarding the 
mass spectrometric detector, the positive ion mode was 
selected for MRM analysis where the parent ions were selected 
at m/z 362.12 > 318.3 for LEVO, 555.2 > 396 for CEF, 
749.61 > 83.0 for AZI and 734.55 > 158 for IS, as shown in  
Fig. 1a, b. 

The validation parameters are presented in Table 2. The 
linearity range was 10–5000 ng mL–1 for AZI, CEF and LEVO 
as shown in Supplementary Fig. S1. The accuracy of the 
method was confirmed by calculating the recovery % of 
each drug using the corresponding regression equations. 
The inter- and intra-day precision scored %RSD <2 units. 
The method was specific as it could determine the three 
drugs simultaneously without interference in the laboratory 
prepared mixtures. The LOD of the drugs was ~3.5 ng mL–1 

and LOQ was ~9 ng mL–1, which prove the high sensitivity 
of the method. 

Analysis of spiked and real water samples 
Oasis Prime HLB cartridges are preferred over HLB car

tridges for SPE because they eliminate the conditioning step, 
and thus reduce solvent consumption and sample 
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preparation time. They were also reported to have higher 
extraction recoveries (40%) than HLB cartridges that are 
reported to be commonly used for sample preconcentration 
of pharmaceuticals in complex environmental matrices 
(Elbalkiny et al. 2019; Yehia et al. 2019), even though the 
sorbent is the same in both cartridges (N-vinylpyrrolidone and 
divinylbenzene copolymer). As a result, Oasis Prime HLB 
cartridges at the original sample pH were chosen as they 
enabled a greener and better recovery of the selected drugs 
using a single solvent elution with pure methanol after spiking 
all water samples with 100 ng of each drug standard. The 
analysis of laboratory-spiked distilled water yielded the 

recovery of cartridges, and it was found to be 86.3, 83.8 
and 89.1% for LEVO, AZI and CEF, respectively. The contami
nated real water samples showed the presence of one or two 
of the cited drugs in each sample as shown in Table 3, while 
the clean real samples didn’t show any traces of the three 
drugs. 

Characterisation analysis of g-C3N4 

A typical transmission electron mciroscopy (TEM) image 
demonstrates the formation of mesoporous g-C3N4 as loose 
agglomerates with an irregular shape (Fig. 2a). The images 

LEVO AZI CEF IS
(a)

(b)

Fig. 1. (a) Product ion spectra of [M + H]+ of the positive ion ESI-MS/MS spectra: LEVO 362.12 > 318.3 (m/z), AZI 
749.61 > 83.0 (m/z), CEF 555.2 > 396 (m/z) and IS 734.55 > 158 (m/z); (b) multiple reaction monitoring (MRM) chromatograms 
of the three drugs and IS.    

Table 2. Validation sheet for the proposed LC-MS/MS method for the quantification of LEVO, AZI and CEF.       

Parameter LEVO AZI CEF   

Linearity range (ng mL–1) 10–5000   

Correlation coefficient (r) 0.997 0.991 0.9996 

Slope 0.0009 0.0006 0.0004 

Intercept −0.0114 0.0676 −0.01 

s.d. of residuals 0.099 0.110 0.018 

LOD A (ng mL–1) 6.04 6.6 6.34 

LOQ A (ng mL–1) 9.75 9.63 9.91 

Accuracy B (Recovery % ± s.d.) 99.83 ± 1.21 99.37 ± 1.25 99.0 ± 0.81 

Precision C (%RSD) Intra-day 1.32 0.65 1.37 

Inter-day 1.54 1.43 1.92 

ALOD = (s.d. of the response/slope) × 3.3; LOQ = (s.d. of the response/slope) × 10. 
BThe average of five experiments. 
CThe average of nine experiments.  

H. T. Elbalkiny et al.                                                                                                                         Environmental Chemistry 

272 



also show a layered and plate-like and a worm-like porous 
structure (Fig. 2b) due to the substantial amounts of NH3 
that may be released from the precursors which is attributed 
to an intrinsic catalytic property (Zhu et al. 2015). 
Furthermore, the selected area electron diffraction (SAED) 
pattern showed diffraction rings corresponding to 201 and 
220 crystal planes (Fig. 2c) (Sun et al. 2022). Energy- 
dispersive X-ray spectroscopy (EDX) revealed the purity of 
the prepared sample and existence of all the anticipated 
elements in the photocatalyst, carbon (29.3%) and nitrogen 
(71.1%), as shown in Supplementary Fig. S2. The zeta (ζ) 
potential of g-C3N4 showed a value of −36.06 mV 
(Supplementary Fig. S3a), which reflects a high stability 
(El-Borady et al. 2021). The X-ray diffraction (XRD) pattern 
in Supplementary Fig. S3b displays a characteristic intense 
peak at a 2θ value of 27.7° (Zhu et al. 2015) which is 
characteristic of g-C3N4 (Liu et al. 2020). The surface features 
and adsorption–desorption isotherms were studied using BET 
and BJT as shown in Supplementary Table S3. As seen in 
Supplementary Fig. S3c, the adsorption–desorption isotherms 
were of type IV as a H3 hysteresis loop, implying the meso
porous nature of g-C3N4 which is consistent with its TEM 
images. The current BET surface area value is significantly 
greater than that previously prepared using melamine as a 
precursor (Yan 2012; Zhu et al. 2015). This increased surface 
area could be attributed to oxidation and exfoliation of 
g-C3N4, which are brought on by prolonged calcination and 
result in a more active catalyst surface, which is considered 

the key to the superior photocatalytic potential of the pre
pared g-C3N4. The structural and functional group informa
tion was demonstrated by FTIR analysis of both the 
melamine and the prepared g-C3N4, as in Supplementary 
Fig. S4, showing their characteristic spectra. The optical 
properties of the g-C3N4 were acquired by measuring its 
UV-Vis diffuse reflectance (DRS) (Zhang et al. 2016). 
Furthermore, the photoluminescence (PL) spectroscopy 
explained the photocatalytic potential as shown in Fig. 3. 
The PL spectrum (excitation at 325 nm) showed an emission 
peak around 443 nm that was ascribed to n–π∗ electronic 
transitions that included the lone pairs of the nitrogen atoms 
in g-C3N4 (Svoboda et al. 2019). 

Photocatalytic degradation using g-C3N4 

Photodegradation mechanism 
Based on the above characterisation results, the bandgap 

of g-C3N4 is relatively narrow, so it can generate 
electron–hole pairs under visible light irradiation. The pho
toexcited electrons in the conduction band (CB) of g-C3N4 
can react with O2 in air to produce active superoxide radi
cals (·O2

−), where this generated species can react with 
electrons to form H2O2. H2O2 then reacts with electrons to 
form hydroxyl radicals (OH). O2

−, OH and H2O2 generated 
by g-C3N4 are involved in converting antibiotic pollutants 
into carbon dioxide and water (Dong et al. 2022), as shown 
in Supplementary Fig. S5. 

Table 3. LEVO, AZI, and CEF in real water samples using LC-MS/MS method.            

Real water Concentration before photodegradation Concentration after photodegradation Photodegradation (%) 

LEVO AZI CEF LEVO AZI CEF LEVO AZI CEF   

Sample A 1 n.d. B n.d. B 187.5 C – – 14.8 C – – 92.1 

Sample A 2 n.d. B 458.1 C 1109.9 C – 27.48 C 33.3 C – 94.0 97.0 

Sample A 3 247.9 C n.d. B n.d. B 22.1 C – – 91.1 – – 

ASample 1: Nile River, sample 2: industrial effluents collected from 6th of October city, and sample 3: industrial effluents collected from 10th of Ramadan city. 
BNot detected. 
CConcentration in ng/mL calculated using the proposed LC-MS/MS method.  

(a) (b) (c)

Fig. 2. (a, b) TEM images of the synthesised g-C3N4 at different magnification scales. (c) The SAED pattern of g-C3N4.    
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Screening experiment 
The performance of the photocatalytic activity of g-C3N4 

depends on different variables. Different pH ranges, initial 
concentrations of the three drugs, dose of g-C3N4, agitation 
rate and time intervals were studied. After the exploratory 
runs, it was found that the initial concentration of the 
studied antibiotics and the agitation rate had insignificant 
effects on the degradation rate. Meanwhile, the pH of the 
solution, dose of g-C3N4, and time intervals played a remark
able role in the photocatalytic reactions. As such, these three 
variables were included in the optimisation study that was 
designed via response surface methodology. 

Response surface modelling and analysis of 
variance 

The quadratic statistical models were suggested with the 
highest order polynomial based on the experimental design 
results and statistical analysis performed on the three 
responses (highest F value and lowest P value). The model 
results obtained by experimental design are shown in  
Eqns 1–3: 

A B
C AB AC

BC A B
C

Removal % of LEVO = +88.67 7.13 + 2.75
+ 10.38 + 3.00 5.75
+ 7.00 34.96 13.71

7.46 ,

2 2

2 (1) 

A B
C AB AC

BC A B
C

Removal % of AZI = +90.33 7.50 + 2.12
+ 11.38 + 3.75 6.25
+ 6.00 34.22 12.67

6.67 ,

2 2

2 (2) 

A B
C AB AC

BC A B
C

Removal % of CEF = +93.00 7.88 + 1.38
+ 10.75 + 4.50 5.75
+ 6.25 34.50 12.50

6.25 ,

2 2

2 (3)  

where A is the pH, B is the dose of g-C3N4 in g L–1 and C is 
the time in minutes. The sign indicates the effect of the 
variable. A positive sign indicates a direct effect for B, C, 
AB and BC, while a negative sign indicates an inverse effect 
for A, AC, A2, B2 and C2. 

According to the ANOVA of the model in Table 4, the F 
values were found to be 35.7, 26.4 and 30.5, and the P values 
were found to be 0.0005, 0.0011 and 0.0008 for the removal 
percentages of LEVO, AZI and CEF, respectively, which implies 
that the model is significant. The model coefficients (R2) were 
found to be 0.9847, 0.9794 and 0.9821, for the three 
responses, respectively. This indicates that the quadratic 
model explained 98.5, 97.9 and 98.2% of the total variances 
of the three responses. The R2 and adjusted R2 values were 
close to unity, which display the good agreement between 
experimental and predicted values. The values of the predicted 
R2 were found to be in reasonable agreement with the values 
of the adjusted R2, which supports the high significance of the 
model. High adequate precision values (>4) indicate that the 
model has a high signal-to-noise ratio as shown in Table 4. 

The P and F values were calculated for each independent 
variable and its interaction. The calculated F value of the 
square term of pH had the largest effect on the removal 
percentages of the three drugs, followed by the effect of 
time. However, the dose of nanoparticles showed the mini
mum effect for the removal of the three drugs. Lack of fit 
was found to be insignificant for the three responses. The 
ANOVA of the quadratic model is shown in Supplementary 
Tables S4, S5 and S6. 
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Fig. 3. UV-Vis diffuse reflectance spectra of g-C3N4 (a), its band gap calculation (b), and its photoluminescence emission spectrum at 
an emission peak of 443 nm (c).    

Table 4. ANOVA and fit statistics of the BBD model.      

Parameters Removal 
% LEVO 

Removal 
% AZI 

Removal 
% CEF   

Model F value 35.7 26.4 30.5 

Model P value 0.0005 0.0011 0.0008 

R2 0.9847 0.9794 0.9821 

R2 (adjusted) 0.9571 0.9422 0.9498 

R2 (predicted) 0.8805 0.8601 0.8994 

Adequate precision 16.4936 14.0111 15.1717   
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Reciprocal effect of variables on the removal 
percentages 

The simultaneous effect of pH and dose of nanoparticles 
at constant time is shown in Fig. 4a. The pH of the reaction 
solution governs the surface charge on the photocatalyst. 
The surface of the prepared photocatalyst with pH values 
higher than 6.8 will be saturated by negative charges and at 
lower pH has a positive charge caused by H+ protons. 
Photodegradation efficiency was analysed at different pH 
values 5, 7 and 9 under visible light irradiation. LEVO and 
CEF contain a variety of functional groups with strongly 
acidic (carboxylic/sulfonic) or basic (amine/aminothiazole) 

properties, so they will be present in three different ionic 
forms, mainly depending on the pH. At acidic pH 5, they are 
positively charged, while AZI will exist as zwitterion in the 
pH range of 3.5−7.7, which explains the minimum interac
tion between the drug molecules and particles. The percent
age removal of the three drugs LEVO, AZI and CEF increases 
until it reaches a maximum point at pH 7, where the mole
cules of the three drugs are uncharged. On this basis, it is 
preferable to keep the pH neutral to avoid repulsions that 
may cause lesser adsorption to the catalyst surface, which 
diminishes photodegradation efficiency (Shandilya et al. 
2018). By increasing the pH of the solution to 9, AZI, CEF 
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Fig. 4. 3D response surface contour plots showing the simultaneous effects on the removal % of LEVO, AZI and CEF. (a) Effects of 
pH and the dose of nanoparticles; (b) response surface contour plots showing the effects of pH and time; (c) response surface 
contour plots showing the effects of time and dose of nanoparticles.    

Table 5. Optimisation parameters for removal % of LEVO, AZI and CEF.          

Parameters Optimised value Predicted removal % Observed removal % A 

LEVO AZI CEF LEVO AZI CEF   

A pH 6.66 94.3 97.3 99.6 92.6 98.5 99.1 

B Dose of nanoparticles (g L–1) 0.71 

C Time (min) 86.40 

Bias %     0.18 1.20 0.46 

AIn the laboratory distilled water spiked with 500 ng mL–1 of each of LEVO, AZI and CEF.  
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and LEVO molecules acquire a negative charge, which 
causes repulsion and a decrease in interaction with particles 
and thus their removal; another factor that can play a major 
role in low antibiotic degradation is the decomposition of 
hydroxyl radicals in alkaline media (Fauzi et al. 2018). 

On the other hand, the removal of the three drugs is 
maximised at the middle level of the dose of nanoparticles 
(0.6 g L–1), whereas it slightly decreases at lower and higher 
doses as shown in Fig. 4a. Additionally, the mutual effect of 
pH and time at a constant dose of nanoparticles is shown in  
Fig. 4b, demonstrating that the removal of the three drugs 
increases with time at pH 7 as mentioned above. The 
removal % reaches its maximum at 60 min, but no further 
significant increase is observed against time. Fig. 4c shows 
the effect of time and dose of nanoparticles at constant pH 
which shows that the removal of the three drugs is greatly 
affected by increasing time (from 60 to 90 min) with a lower 
effect of nanoparticle dose. 

Upon applying the optimum conditions, the removal per
centage of the studied drugs was maximised as it reached 
~97% in only 60 min, so no further modification such as 
element doping was required to accelerate photocatalytic 
performance. In addition, the higher surface area of the 
synthesised g-C3N4 provides more sites for interaction with 
the studied drugs (Zhu et al. 2015). 

Optimisation, prediction and model validation 
The validation of the RSM model was performed by 

measuring triplicate experiments in selected optimisation 
conditions as shown in Supplementary Fig. S6, where the 
optimised parameters obtained from the statistical analysis 
showing the highest desirability index (0.886) are listed in  
Table 5. By comparing actual percentage removal versus 
predicted percentage removal in the laboratory distilled 
water spiked with 500 ng mL–1 of each of LEVO, AZI and 
CEF, an error of 0.18, 1.2 and 0.46% was observed for the 
removal of each drug, respectively. Thus, the second-order 
polynomial regression equation was confirmed as an 

estimate of the accurate percentage of the removal from 
water samples. 

Photodegradation and matrix effect of spiked 
and real water samples 

The optimised conditions were applied to clean real 
water and compared to the results of the laboratory distilled 
water samples (both spiked with equal amounts of the three 
cited pharmaceuticals, 500 ng mL–1), and it was observed 
that the efficiency of photodegradation in real samples 
showed a slight decrease than that in distilled water, due 
to the matrix effect of environmental parameters such as the 
presence of pollutants other than our studied drug or micro
organisms that might affect their removal, as shown in  
Fig. 5. The photodegradation of AZI showed the highest 
matrix effect of 6.20%, while LEVO and CEF showed similar 
matrix effects of 4.11 and 4.01%, respectively. 

Due to the high efficiency of the process by g-C3N4 
(>90%) and the low matrix effect for all drugs, the 
proposed photodegradation procedure was applied to real 
water samples containing the three cited drugs as shown in  
Fig. 5. The results of the analysis after photodegradation 
with g-C3N4 using the adopted chromatographic method 
are shown in Table 3, where the obtained results were 
found to be similar to the results of the clean real water 
samples. 

Greenness and whiteness assessments 

ComplexGAPI greenness tool 
Complex green analytical procedure index (ComplexGAPI) 

was chosen for the assessment as it provides an evaluation of 
the entire methodology in addition to the synthesis of the 
proposed g-C3N4 particles. ComplexGAPI is considered a com
plementary tool to the previously developed GAPI metric 
(Płotka-Wasylka 2018; Płotka-Wasylka and Wojnowski 
2021; Saleh et al. 2023). One hexagonal field was added to 
the original GAPI graph which evaluates several components 
of the pre-analysis processes and its conditions, the number of 
rules correlated to green economy, health and safety hazards 
of chemicals and instrumentation used in the synthesis 
process, purity of the end products, and calculation of its 
E factor. The original five pictograms of the GAPI tool are 
subdivided into smaller sub-pictograms to assess 15 aspects 
related to the analytical method including the type of method, 
the sample (collection – preservation – transport – storage – 
preparation), reagents, instrumentation and waste treatment 
(El-Naem and Saleh 2021; Kayali et al. 2023; Mannaa 
et al. 2023). 

The ComplexGAPI showed a green profile as it scored 2 
red sub-hexagons only related to the high temperature 
applied during synthesis of g-C3N4 which consumes a high 
amount energy. Only two red sub-pictograms were scored 
due to the high energy output of the analytical method 
(LC-MS/MS) and the non-treated waste of acetonitrile and 
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formic acid with an NFPA score 2 or 3, produced from the 
method. Applying extraction using Oasis Prime HLB 
cartridges scored a yellow pictogram due to lower solvent 
consumption (10–100 mL) and miniaturised procedure. 
Moreover, the E factor was less than 0.1 because the analysis 
was conducted without any prior preparation, confirming 
the recommended method’s overall environmental friendli
ness as shown in Fig. 6a. The scores of the pictograms and 
hexagon are shown in Supplementary Table S7. 

RGB 12 algorithms 
Analytical procedures are considered sustainable when 

they consider not just their environmental impact but also 
their economic cost, validity and efficiency. An effective tool 
for assessing the sustainability of analytical techniques is the 
RGB 12 algorithm (Morgan et al. 2023). According to White 
Analytical Chemistry (WAC), RGB 12 includes three princi
ples (red, green and blue) of assessment. Each principle was 
subdivided into four parameters, for example red is subdi
vided into R1, R2, R3 and R4, where a score from 0–100 is 
assigned to each parameter, with 0 being the worst, and 100 
means that the method is adapted to this parameter. The red 
principle (R1–R4), green principle (G1–G4) and blue princi
ple (B1–B4) relate to analytical performance, environmental 
impact and economic criteria, respectively. The general 
accordance of the method with all three principles is 
expressed by an overall quantitative principle known as 
‘whiteness’ (Nowak et al. 2021; Elbalkiny et al. 2022;  
Marzouk et al. 2023). 

The proposed method showed an excellent balance 
between the three aspects of WAC, scoring an average 
white score of 80.1 as shown in Fig. 6b. It is worth 

mentioning that, through the performed WAC evaluation, 
all colours and principles were equally important, to main
tain the idea of sustainability. This reflects the method’s 
high analytical efficiency, green profile and effective cost. 

Conclusion 

This study presented a simple, effective method to detect 
and quantify the repurposed antibiotics LEVO, AZI and CEF 
in different water samples coinciding with their reported 
treatment of COVID-19 infections which has led to their 
extensive use and disposal over the past few years. The 
quantitation was achieved using LC-MS/MS with positive 
ion mode for MRM detection. The water samples were 
extracted by SPE using Oasis HLB Prime cartridges which 
is considered a green option as it reduces sample prepara
tion time and solvent consumption. This study also 
described the synthesis and characterisation of a modified 
green and safe photocatalyst g-C3N4 with increased surface 
area, and thus higher photocatalytic activity with no need 
for its doping. The g-C3N4 was used for the photocatalytic 
degradation of the three drugs of interest from spiked and 
real water samples under experimental conditions optimised 
by response surface methodology through Box–Behnken 
design. The whole procedure was assessed for its greenness 
and whiteness. 

Supplementary material 

Supplementary material is available online. 
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