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ABSTRACT 

Rhizobia are a diverse group of α- and β-proteobacteria that boost soil fertility by forming a 
nitrogen-fixing symbiosis with legumes, which is why legumes are grown in rotation with cereals 
in agriculture. Rhizobia that naturally populate Australian soils are largely incompatible with 
exotic agricultural legumes, therefore, compatible strains have been imported from all over the 
world for use as inoculants. An amalgamated collection of these strains, called the International 
Legume Inoculant Genebank (ILIG), has been established at Murdoch University, to provide a 
centralised strain storage facility and support rhizobial research and inoculant development (see 
http://ilig.murdoch.edu.au). The ILIG contains 11,558 strains representing 96 bacterial species from 
778 legume species collected from >1200 locations across 100 countries. New and sometimes 
inefficient rhizobia evolve in the field following legume inoculation, through horizontal symbiosis 
gene transfer from inoculants to soil bacteria. To provide a benchmark to monitor and assess the 
impact of this evolution, all commercial Australian inoculant strains were genome sequenced and 
these data made available (PRJNA783123, see https://www.ncbi.nlm.nih.gov/bioproject/ 
PRJNA783123/). These data, and the further sequencing of the >11,000 historical strains in the 
ILIG, will increase our understanding of rhizobial evolution and diversity and provide the back-
bone for efforts to safeguard Australia’s legume inoculation program.  
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The nitrogen-fixing symbiosis between diverse soil saprophytic bacteria known as rhizo-
bia (or root nodule bacteria) and legumes is responsible for providing a substantial 
proportion of the biosphere’s available nitrogen.1 This symbiosis is established when 
rhizobia infect legume roots, differentiating into their nitrogen-fixing (or bacteroid) 
form, within plant-derived root nodules.2 Bacteroids reduce dinitrogen (N2) gas into 
ammonia (NH3), secreting this source of fixed nitrogen to the host plant, in exchange for 
a supply of carbon from the legume. When the plant senesces, some of this fixed nitrogen 
makes its way into the soil, providing a source of bioavailable nitrogen for subsequent 
plants. For this reason, legumes are often grown in rotation with cereals in agriculture.3–5 

Symbiotic nitrogen fixation through grain legumes (e.g. chickpea, lupin, peas) and 
pasture legumes (e.g. clover, lucerne, serradella) is estimated to save the Australian 
agricultural sector A$4 billion in synthetic fertiliser costs annually, and reduce the CO2 
footprint associated with fertiliser production and application.6 

Although bacteria in the genus Rhizobium are well known as legume symbionts, this 
capability is much more phylogenetically diverse, with 15 genera of α-proteobacteria 
(including Rhizobium) and 3 genera of β-proteobacteria engaging in legume symbioses.7 

Close to 100 species of legumes are cultivated across Australia, and, although only a 
small proportion of these are widely grown, their requirement for a compatible symbiotic 
partner can be quite specific.8,9 To maximise the agricultural benefits of symbiotic 
nitrogen fixation, legumes are often inoculated with elite strains of rhizobia that specifi-
cally nodulate the target legume and are highly efficient nitrogen fixers10–12 (Fig. 1). This 
is of primary importance in Australia, as our soils tend to lack rhizobia that nodulate and 
efficiently fix nitrogen with the exotic legumes we use in agriculture. 

Since the 1950s in Australia, thousands of strains of rhizobia have been collected from 
legumes and soils from all over the world by various University and government agencies 
and stored in small, dispersed collections. To preserve and develop this genetically 
diverse resource critical for inoculum development, the International Legume 
Inoculant Genebank (ILIG) was established in 2020 at Murdoch University in Western 
Australia, through the financial support of the Grains Research and Development 
Corporation (GRDC) of Australia. The ILIG has amalgamated strain collections from all 
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over Australia into one facility, which currently houses 
11,558 strains of rhizobia representing 96 different bacterial 
species, isolated from 778 species of legumes that were 
collected from more than 1200 locations throughout 100 
countries. The ILIG has an online catalogue (see http://ilig. 
murdoch.edu.au) to browse available information on strains 
within the collection and request strains of interest for 
research purposes. Critically, as the majority of the strains 
in the ILIG were collected prior to the genome sequencing 
era, much of their genetic potential remains unknown. 

Rhizobia show a remarkable diversity in genome size and 
complexity. In comparison to enteric bacteria, rhizobial 
genomes are relatively large, ranging in size from 6 Mb to 
more than 10 Mb, and they can be structurally complex, 
consisting of a chromosome with or without multiple addi-
tional plasmids.2 These plasmids can be very large, such 
as in Sinorhizobium meliloti 1021, which carries 1.3- and 
1.7-Mb plasmids, along with its 3.7-Mb chromosome.13–15 

Genes essential to the establishment and maintenance of 
symbiosis (i.e. nod or nodulation, and nif and fix or nitrogen 
fixation) are typically found on plasmids (e.g. Rhizobium 
and Sinorhizobium) or chromosomally on symbiosis islands 
(e.g. Mesorhizobium and Bradyrhizobium) and are generally 
considered to be part of the accessory genome.16 

For symbiotic Mesorhizobium spp., chromosomal symbio-
sis genes are encoded on mobile integrative and conjugative 
elements (ICEs). These symbiosis ICEs (previously referred 
to as symbiosis islands) were discovered when nodule iso-
lates from the pasture legume Lotus corniculatus (birds foot 
trefoil) were found to have evolved through the acquisition of 
a 508-kb region from an introduced inoculant strain in New 
Zealand.17 Subsequent work showed that the symbiosis ICE 
excises from the chromosome of a donor cell, transferring by 
conjugation to a recipient, and integrating into the recipient 
chromosome in a site-specific manner.18 ICE transfer is a 
complex process that is epigenetically activated and con-
trolled by quorum sensing.19,20 Horizontal transfer of related 
symbiosis ICEs has been documented for Mesorhizobium in 
Australian soils, including inoculants used for the pasture 

legume Biserrula pelecinus21 and grain legume Cicer arieti-
num (chickpea).22 These studies showed that some symbiosis 
ICEs are tripartite in structure, whereby the ICE exists as 
three separate regions of DNA dispersed across the chromo-
some. These three regions recombine into a singular circular 
DNA molecule immediately prior to conjugal transfer.23,24 

Although Australian soils seem to lack native Mesorhizobium 
strains compatible with introduced legumes, they do harbour 
an abundance of non-symbiotic Mesorhizobium spp. capable 
of acquiring symbiosis ICEs and gaining the ability to nodu-
late legumes.25 Critically, however, ICE transfer recipients 
are not always effective symbionts,21,26,27 so transfer 
events have the potential to create strains less efficient at 
nitrogen fixation that can out-compete the inoculant strain 
for nodulation, leading to a reduced benefit of legume 
inoculation. 

Accurately following and assessing the impact of symbio-
sis gene transfer in agriculture is only possible with knowl-
edge of the inoculant genome sequence, which has not been 
historically available for the majority of commercially availa-
ble strains of rhizobia in Australia. To close this gap, a genome 
sequencing pipeline was established to provide closed 
genomes of all commercial inoculant strains. Long-read 
assemblies were first created using the Oxford Nanopore 
Technologies MinION Mk1B, which were then polished with 
short-read sequences obtained from the same DNA using an 
Illumina NextSeq. 500 (Fig. 2). The commercial legume inoc-
ulants were sourced from the 2019 Mother Culture main-
tained by the Australian Inoculants Research Group (AIRG), 
which supplies manufacturers with a standardised and 
quality-controlled source of rhizobia for the inoculant indus-
try. Sequencing from this source, rather than historical collec-
tions of these inoculant strains, ensures that the acquired 
genomic data for each strain directly relates to the germplasm 
supplied to growers. 

With a breadth of strains spanning five genera, the diver-
sity of strains used as inoculants in Australia complicates 
genome sequencing efforts, in that many have very different 
growth requirements and phenotypic characteristics.28 

(a) (b)

Fig. 1. Benefits of inoculation with Rhizobium sp. strain WSM4643. (a) Field plot comparison of uninoculated vetch (Vicia sativa) 
(left plot) and inoculated plants (right plot). (b) Comparison of nodulation and plant growth responses in uninoculated field pea 
(Piscum sativum) (left) with inoculated plant (right). Photos courtesy of Dr Ron Yates (Department of Primary Industries and 
Regional Development).    
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Depending on the genus of the inoculant, different media 
types and extraction techniques were required for growth 
and isolation of genomic DNA. For many strains, thorough 
washing of the samples was necessary to limit carryover of 
cell lysate contaminants that could inhibit the sequencing 
reaction. 

Closed genomes were completed for 38 strains, which 
are now available online under National Center for 
Biotechnology Information (NCBI) BioProject accession 
number PRJNA783123 (see https://www.ncbi.nlm.nih. 
gov/bioproject/PRJNA783123/). These genome sequences 
have in the first instance been used to assign more appropri-
ate taxonomy to these strains, which is a critical first step in 
building a clear picture of the genetic diversity of the 
Australian inoculant cohort. However, many strains could 
not be given a designation at the species level due to a lack 
of closely related type strains. This reflects both the inher-
ently novel biology of many of the inoculant organisms and 
the paucity of accurate genomic information currently avail-
able for many species of rhizobia. More sequencing of 
diverse rhizobia isolates from a range of representative leg-
umes and biogeographical locations is therefore needed to 
address this deficit. Nevertheless, most inoculants showed 
genome architectures that were consistent with other mem-
bers of their respective genera, although Rhizobium sp. 
SRDI969 was unusual in that it carried chromosomally 
encoded symbiosis genes, notable because Rhizobium spp., 
unlike Bradyrhizobium spp. or Mesorhizobium spp., typically 
carry symbiosis genes on plasmids.29 Rhizobium sp. SRDI969 

is new strain for faba bean (Vicia faba), which, alongside the 
new pea (Pisum sativum), lentil (Lens culinaris) and vetch 
(Vicia spp.) strain Rhizobium sp. WSM4643, is being released 
for the 2024 growing season as inoculants in Australia for 
these important grain legumes. This marks the first time in 
inoculant history that novel strains are to be released to 
commerce alongside their complete genome sequence. This 
will allow more-accurate and longer-term monitoring of 
inoculant efficacy and should become standard practice to 
also ensure the catalogue of the genetic material released as 
inoculants remains up to date. 

This ILIG strain collection and inoculant genome 
sequences are invaluable resources for plant and microbe 
research in Australia. The ILIG collection, with its thousands 
of diverse root-nodule bacteria collected from around the 
world, will serve as the backbone for future research and 
development of novel inoculants for the benefit of 
Australian agriculture, and act as a secure repository for 
new isolates. However, with no genomic data on most of 
the historical strains in the collection, the full scope of the 
genetic potential of this collection is unclear. Future work 
will sequence the historical germplasm in the ILIG. These 
data will help in the development of rapid and accurate 
methods to monitor inoculation success, as well as identify 
and follow the impact of inoculant symbiosis gene transfer 
events on nitrogen fixation. It will also provide us with a 
better understanding of the dual saprophytic and symbiotic 
lifestyle of rhizobia and the evolutionary forces that have 
shaped this fascinatingly diverse group of bacteria. 
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Fig. 2. Genome sequencing pipeline. The pipeline consists of six steps: (1) isolation of genomic DNA, (2) sequencing with MinION 
Mk1B, (3) base calling or raw data conversion to sequence data, (4) read assembly, (5) incorporation of short-read sequence for 
polishing and error correction, and (6) gene assignment and annotation. Created with BioRender.com.    
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