Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals

Articles citing this paper

Nutritional and flock management options to reduce methane output and methane per unit product from sheep enterprises

R. S. Hegarty A D , D. Alcock A C , D. L. Robinson A C , J. P. Goopy A C and P. E. Vercoe A B
+ Author Affiliations
- Author Affiliations

A Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW 2351, Australia.

B University of Western Australia, Crawley, WA 6009, Australia.

C Industry and Investment NSW, Cooma, NSW 2630, Australia.

D Corresponding author. Email: roger.hegarty@industry.nsw.gov.au

Animal Production Science 50(12) 1026-1033 https://doi.org/10.1071/AN10104
Submitted: 23 June 2010  Accepted: 20 October 2010   Published: 23 November 2010



48 articles found in Crossref database.

Lactobacillus fermented plant extracts provided to yearling ewes improves their lambs’ antioxidant status at weaning
Beck M.R., Garrett K., Marshall C.J., Olejar K., Bunt C.R., Maxwell T.M.R., Greer A.W., Gregorini P.
Animal Feed Science and Technology. 2021 281 p.115103
Modelling Chinese grassland systems to improve herder livelihoods and grassland sustainability
Behrendt Karl, Takahashi Taro, Kemp David R., Han Guodong, Li Zhiguo, Wang Zhongwu, Badgery Warwick, Liu Haibo
The Rangeland Journal. 2020 42(5). p.329
The effect of Haemonchus contortus and Trichostrongylus colubriforms infection on the ruminal microbiome of lambs
Corrêa Patricia Spoto, Mendes Lucas William, Lemos Leandro Nascimento, Sampaio Ana Claudia Koki, Issakowicz Juliano, McManus Concepta Margaret, Tsai Siu Mui, Faciola Antonio Pinheiro, Abdalla Adibe Luiz, Louvandini Helder
Experimental Parasitology. 2021 231 p.108175
Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle
Daetwyler Hans D, Capitan Aurélien, Pausch Hubert, Stothard Paul, van Binsbergen Rianne, Brøndum Rasmus F, Liao Xiaoping, Djari Anis, Rodriguez Sabrina C, Grohs Cécile, Esquerré Diane, Bouchez Olivier, Rossignol Marie-Noëlle, Klopp Christophe, Rocha Dominique, Fritz Sébastien, Eggen André, Bowman Phil J, Coote David, Chamberlain Amanda J, Anderson Charlotte, VanTassell Curt P, Hulsegge Ina, Goddard Mike E, Guldbrandtsen Bernt, Lund Mogens S, Veerkamp Roel F, Boichard Didier A, Fries Ruedi, Hayes Ben J
Nature Genetics. 2014 46(8). p.858
Heritability estimates of methane emissions from sheep
Pinares-Patiño C.S., Hickey S.M., Young E.A., Dodds K.G., MacLean S., Molano G., Sandoval E., Kjestrup H., Harland R., Hunt C., Pickering N.K., McEwan J.C.
Animal. 2013 7 p.316
Can animal genetics and flock management be used to reduce greenhouse gas emissions but also maintain productivity of wool-producing enterprises?
Alcock Douglas J., Harrison Matthew T., Rawnsley Richard P., Eckard Richard J.
Agricultural Systems. 2015 132 p.25
Synergistic effect of methane emission through ruminant production
T O Ososanya, T O Faniyi
African Journal of Agricultural Research. 2015 10(25). p.2501
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
Kaur Parwinder, Appels Rudi, Bayer Philipp E., Keeble-Gagnere Gabriel, Wang Jiankang, Hirakawa Hideki, Shirasawa Kenta, Vercoe Philip, Stefanova Katia, Durmic Zoey, Nichols Phillip, Revell Clinton, Isobe Sachiko N., Edwards David, Erskine William
Frontiers in Plant Science. 2017 8
The impact of ewe lamb mating and different feeding strategies over summer–autumn on profit and risk: a case study in south-west Victoria
Tocker Jonathon, Behrendt Ralph, Raeside Margaret, Malcolm Bill
Animal Production Science. 2020 61(11). p.1137
Hematological, biochemical alterations and methane production in sheep submitted to mixed infection of Haemonchus contortus and Trichostrongylus colubriformis
Fernandes Murilo Antônio, de Mello Tavares Lima Paulo, do Amarante Alessandro Francisco Talamini, Abdalla Adibe Luiz, Louvandini Helder
Small Ruminant Research. 2022 216 p.106798
Ruminant enteric methane mitigation: a review
Cottle D. J., Nolan J. V., Wiedemann S. G.
Animal Production Science. 2011 51(6). p.491
Creating a low enteric methane emission ruminant: what is the evidence of success to the present and prospects for developing economies?
Goopy J. P.
Animal Production Science. 2019 59(10). p.1769
Greenhouse gas emissions profile for 1 kg of wool produced in the Yass Region, New South Wales: A Life Cycle Assessment approach
Brock Philippa M., Graham Phillip, Madden Patrick, Alcock Douglas J.
Animal Production Science. 2013 53(6). p.495
Association of wool growth with gut metabolism and anatomy in sheep
De Barbieri I., Hegarty R.S., Li L., Oddy V.H.
Livestock Science. 2015 173 p.38
Genetic correlations between methane production and fertility, health, and body type traits in Danish Holstein cows
Zetouni L., Kargo M., Norberg E., Lassen J.
Journal of Dairy Science. 2018 101(3). p.2273
Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing1
Min Byeng Ryel, Gurung Nar, Shange Raymon, Solaiman Sandra
Journal of Animal Science. 2019 97(8). p.3523
Comparison of methods to determine methane emissions from dairy cows in farm conditions
Huhtanen P., Cabezas-Garcia E.H., Utsumi S., Zimmerman S.
Journal of Dairy Science. 2015 98(5). p.3394
Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation (2015)
Kebreab Ermias, Tedeschi Luis, Dijkstra Jan, Ellis Jennifer L., Bannink Andre, France James
Greenhouse Gas Emissions From Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia
Meier Elizabeth A., Thorburn Peter J., Bell Lindsay W., Harrison Matthew T., Biggs Jody S.
Frontiers in Sustainable Food Systems. 2020 3
Hiện trạng và kịch bản giảm phát thải khí mêtan từ đường tiêu hóa của hệ thống nuôi bò thịt quảng canh quy mô nông hộ ở Quảng Ngãi
Ngoan Lê Đức, Dũng Đinh Văn, Phùng Lê Đình, Searchinger Timothy D.
Can Tho University Journal of Science. 2016 46 p.1
Increasing ewe genetic fecundity improves whole-farm production and reduces greenhouse gas emissions intensities
Harrison Matthew T., Jackson Tom, Cullen Brendan R., Rawnsley Richard P., Ho Christie, Cummins Leo, Eckard Richard J.
Agricultural Systems. 2014 131 p.23
Technologies for reducing enteric greenhouse gas emissions from livestock: Current and future research
INTERNATIONAL CONFERENCE ON ORGANIC AND APPLIED CHEMISTRY (ICOAC) 2022 (2024)
Hegarty Roger S., Leahy Sinead C.
Carbon footprint of dairy goat production systems: A comparison of three contrasting grazing levels in the Sierra de Grazalema Natural Park (Southern Spain)
Gutiérrez-Peña Rosario, Mena Yolanda, Batalla Inmaculada, Mancilla-Leytón Juan Manuel
Journal of Environmental Management. 2019 232 p.993
The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation
Hayes Ben J., Lewin Harris A., Goddard Michael E.
Trends in Genetics. 2013 29(4). p.206
Potential aboveground biomass in drought‐prone forest used for rangeland pastoralism
Fensham R. J., Fairfax R. J., Dwyer J. M.
Ecological Applications. 2012 22(3). p.894
GHG Emissions from Dairy Small Ruminants in Castilla-La Mancha (Spain), Using the ManleCO2 Simulation Model
Salcedo Gregorio, García Oscar, Jiménez Lorena, Gallego Roberto, González-Cano Rafael, Arias Ramón
Animals. 2022 12(6). p.793
Offering subterranean clover can reduce methane emissions compared with perennial ryegrass pastures during late spring and summer in sheep
Muir S. K., Kennedy A. J., Kearney G., Hutton P., Thompson A. N., Vercoe P., Hill J.
Animal Production Science. 2020 60(11). p.1449
A regional-scale assessment of nutritional-system strategies for abatement of enteric methane from grazing livestock
Almeida A. K., Cowley F. C., Hegarty R. S., Yanez-Ruiz David
Animal Production Science. 2023 63(15). p.1461
GrassGroTM simulation of pasture, animal performance and greenhouse emissions on low and high sheep productivity grazing systems: 1-year validation and 25-year analysis
McPhee M.J., Edwards C., Harden S., Naylor T., Phillips F.A., Guppy C., Hegarty R.S.
animal. 2024 18(3). p.101088
The carbon footprint of UK sheep production: current knowledge and opportunities for reduction in temperate zones
JONES A. K., JONES D. L., CROSS P.
The Journal of Agricultural Science. 2014 152(2). p.288
Determining the Impact of Hogget Breeding Performance on Profitability under a Fixed Feed Supply Scenario in New Zealand
Farrell Lydia J., Kenyon Paul R., Tozer Peter R., Morris Stephen T.
Animals. 2021 11(5). p.1303
Breeding ewe lambs successfully to improve lifetime performance
Kenyon P.R., Thompson A.N., Morris S.T.
Small Ruminant Research. 2014 118(1-3). p.2
The cost effectiveness of a policy to store carbon in Australian agricultural soils to abate greenhouse gas emissions
White Robert E, Davidson Brian
IOP Conference Series: Earth and Environmental Science. 2015 25 p.012004
Breeding for reduced methane emissions in extensive UK sheep systems
COTTLE D. J., CONINGTON J.
The Journal of Agricultural Science. 2012 150(5). p.570
Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms
Rivero M. Jordana, Lopez-Villalobos Nicolas, Evans Alex, Berndt Alexandre, Cartmill Andrew, Neal Andrew L., McLaren Ann, Farruggia Anne, Mignolet Catherine, Chadwick Dave, Styles David, McCracken Davy, Busch Dennis, Martin Graeme B., Fleming Hannah, Sheridan Helen, Gibbons James, Merbold Lutz, Eisler Mark, Lambe Nicola, Rovira Pablo, Harris Paul, Murphy Paul, Vercoe Philip E., Williams Prysor, Machado Rui, Takahashi Taro, Puech Thomas, Boland Tommy, Ayala Walter, Lee Michael R. F.
Reproduction, Fertility and Development. 2021 33(2). p.1
Ruminant grazing feeding and methane production
Vergara-López Juan
Revista de la Facultad de Agronomía, Universidad del Zulia. 2023 40(Supplement). p.e2340Spl05
Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability
Lileikis Tomas, Nainienė Rasa, Bliznikas Saulius, Uchockis Virginijus
Animals. 2023 13(16). p.2586
Performance, metabolic variables and enteric methane production of Santa Inês hair lambs fed Orbignya phalerata and Combretum leprosum
Abdalla Filho A. L., Dineshkumar D., Barreal M., McManus C., Vasconcelos V. R., Abdalla A. L., Louvandini H.
Journal of Animal Physiology and Animal Nutrition. 2017 101(3). p.457
Genomic selection using indicator traits to reduce the environmental impact of milk production
Hansen Axelsson H., Fikse W.F., Kargo M., Sørensen A.C., Johansson K., Rydhmer L.
Journal of Dairy Science. 2013 96(8). p.5306
Daily methane emissions and emission intensity of grazing beef cattle genetically divergent for residual feed intake
Velazco J. I., Herd R. M., Cottle D. J., Hegarty R. S.
Animal Production Science. 2017 57(4). p.627
Improving productivity reduces methane intensity but increases the net emissions of sheepmeat and wool enterprises
Gebbels J.N., Kragt M.E., Thomas D.T., Vercoe P.E.
Animal. 2022 16(4). p.100490
Climate Clever Beef: options to improve business performance and reduce greenhouse gas emissions in northern Australia
Bray Steven, Walsh Dionne, Phelps David, Rolfe Joe, Broad Kiri, Whish Giselle, Quirk Michael
The Rangeland Journal. 2016 38(3). p.207
Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review
Gerber P.J., Hristov A.N., Henderson B., Makkar H., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Adesogan A.T., Yang W.Z., Tricarico J.M., Kebreab E., Waghorn G., Dijkstra J., Oosting S.
Animal. 2013 7 p.220
The Impact of Hogget and Mature Flock Reproductive Success on Sheep Farm Productivity
Farrell Lydia J., Kenyon Paul R., Morris Stephen T., Tozer Peter R.
Agriculture. 2020 10(11). p.566
Adoptability and effectiveness of livestock emission reduction techniques in Australia’s temperate high-rainfall zone
James Adrian R., Harrison Matthew T.
Animal Production Science. 2016 56(3). p.393
Differences in the nutrient concentrations, in vitro methanogenic potential and other fermentative traits of tropical grasses and legumes for beef production systems in northern Australia
Durmic Zoey, Ramírez‐Restrepo Carlos A, Gardiner Chris, O'Neill Christopher J, Hussein Eman, Vercoe Philip E
Journal of the Science of Food and Agriculture. 2017 97(12). p.4075
Productivity and nutritional value of 20 species of perennial legumes in a low‐rainfall Mediterranean‐type environment in southern Australia
Norman Hayley C., Humphries Alan W., Hulm Elizabeth, Young Paul, Hughes Steve J., Rowe Trevor, Peck David M., Vercoe Phil E.
Grass and Forage Science. 2021 76(1). p.134
Twinning in cattle: a pathway for reducing the methane intensity of beef
Gebbels J. N., Kragt M. E., Vercoe P. E., Charmley Ed
Animal Production Science. 2023 63(13). p.1340

Committee on Publication Ethics


Abstract Export Citation Get Permission