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ABSTRACT

Prebiotics are non-digestible carbohydrates that selectively stimulate the growth of beneficial
bacteria. Prebiotic supplementation into poultry diets results in a decreased rate of pathogenic
bacteria colonisation in the gastrointestinal tract. It also enhances production of volatile fatty
acids and lactic acid, which provide the bird with energy. This results in improved host gastroin-
testinal health and productive performance. Oligosaccharides are the most notable prebiotics in
poultry nutrition. Examples of prebiotic oligosaccharides include xylo-oligosaccharides, fructo-
oligosaccharides, and galacto-oligosaccharides. Oligosaccharides are derived from hydrolysis of
non-starch polysaccharides (NSP). They are manufactured from plant sources, synthesised by
physiochemical methods or enzymatic processes. The effects of oligosaccharides occur primarily
in the caeca; oligosaccharides bypass the small intestine and reach the caeca, where they are
readily fermented by beneficial bacteria, such as those in family Lactobacillaceae and Bifidobacteriaceae.
Caeca function is generally poorly understood, despite extensive reviews and studies in this field.
A deeper understanding of the factors that influence ability of the caeca to effectively utilise
oligosaccharides is warranted. This would allow new prebiotic products and NSP- degrading
enzymes to be developed, targeted to specific diets and scenarios. This is required, given the
lack of consistency observed in the outputs derived from different studies assessing oligosaccharide
efficacy in poultry diets. A key hinderance to progression in this field is that authors rarely analyse
the oligosaccharide content and composition in the test diets and products, or in the bird’s
gastrointestinal tract. This review examines the mechanisms behind how oligosaccharides induce
prebiotic effects in poultry, by identifying the role of the caeca in NSP digestion and identifying
the impact of oligosaccharides on caeca microbiota and short-chain fatty acid composition.

Keywords: caeca, enzymes, fibre, microbiota, non-starch polysaccharides, oligosaccharides,
poultry, prebiotic, short-chain fatty acids.

Introduction

The global demand for quality protein from poultry continues to increase. Meeting these 
demands requires development of feed technologies that beneficially affect animal 
performance and bird gastrointestinal health. This is particularly pertinent, given the 
current worldwide push to remove antibiotics from poultry feed. Application of prebiotics 
to poultry diets presents a promising approach. Prebiotics are non-digestible carbohydrates 
demonstrated to favourably manipulate the composition and fermentation patterns of 
gastrointestinal microbiota, selecting for beneficial species that profit the host (Ricke 
et al. 2020). The criterion for a qualifying prebiotic includes (a) not hydrolysed or 
absorbed in the upper gastrointestinal tract, (b) serve as a selective nutrient source for 
beneficial microbial communities in the gastrointestinal tract, and (c) induce physiological 
responses that benefit the host. Fermentation of prebiotics results in generation of short-
chain fatty acids (SCFA), defined as the sum of volatile acids and lactic acid, which 
provide an important energy source for the bird and reduce gastrointestinal pH, thus 
inhibiting proliferation of acid-sensitive pathogenic bacteria species (Liu et al. 2021a, 
2021b). The consequence is improved gastrointestinal and host health and resulting 
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enhanced bird productive performance. Oligosaccharides are 
the main source of prebiotics used in poultry diets. They are 
carbohydrates containing 2–10 monosaccharide units, derived 
from hydrolysis of non-starch polysaccharides (NSP). In recent 
years, there has been increased interest and research into 
the benefits of supplementing poultry diets with different 
types of oligosaccharides. The caeca are the primary site 
of oligosaccharide fermentation. To optimise the beneficial 
effects of oligosaccharides and develop improved and more 
consistent oligosaccharide products, it is necessary to better 
understand how the caeca utilise oligosaccharides. 

Role of the poultry caeca in carbohydrate
utilisation

It is well established that the caeca play a key role in 
carbohydrate digestion (McNab 1973; Svihus et al. 2013; 
Ramírez et al. 2022). This was identified almost a century 
ago by Radeff (1928), who observed that digestion of crude 
fibre was notably greater in birds with caeca than in those 
that had been caecectomised; 4% and 17% more crude 
fibre was digested from wheat and corn respectively, in the 
birds with intact caeca. Extensive research in this field has 
been conducted since, yet uncertainty still prevails about 
the role of the caeca in NSP utilisation. In contrast to readily 
digestible starches, NSP can by-pass the small intestine and 
reach the caeca undigested. NSP-degrading enzymes are 
frequently supplemented into commercial poultry diets to 
facilitate degradation of NSP into carbon sources that the 
microbiota can utilise. The form and circumstances under 
which these resulting NSP fractions can enter the caeca to 
be converted into SCFA are poorly understood. To achieve 
this, it is essential to first understand how the caeca operates 
and recognise factors that influence its efficacy as a site for 
carbohydrate fermentation. 

Caeca anatomy

The caeca are paired blind pouches located at the junction of 
the ileum and colon. They are anoxic microbial habitats, 
hosting the highest microbial load and diversity of 
species in the gastrointestinal tract (Ramírez et al. 2022). 
Evolutionary selection for large caeca is observed in birds 
fed primarily plant-based diets (namely Galliformes and 
Anseriformes), whereas carnivorous birds have very small 
or no caeca (Hunt et al. 2019). This highlights that the caeca 
play a key role in fibre hydrolysis. The caeca in modern com-
mercial broilers range from approximately 13 to 22 cm in 
length (N.K. Morgan and A. Wallace 2022, unpubl. data; 
Metzler-Zebeli et al. 2018). Caeca in laying hens are slightly 
smaller, at approximately 9–18 cm in length (Abdallah and 
Beshara 2015), possibly associated with their comparatively 
lower feed intake. The proximal region of the caeca contains 
villi, lymphoid cells, and goblet cells, supporting that nutrient 

absorption occurs here. In contrast, the medial and distal 
sections of the caeca contain poorly developed villi (Ferrer 
et al. 1991), suggesting that nutrient absorption does not 
readily occur in these regions. Compared with the small 
intestine, the caeca contain a higher abundance of lymphoid 
tissue (Casteleyn et al. 2010) and lower height and density of 
villi (Majeed et al. 2009; Elling-Staats et al. 2022). The 
presence of lymphoid nodules throughout the mucus membrane 
of the caeca  provide evidence that the  caeca  play a  role  in  main-
taining gut immune homeostasis (Wickramasuriya et al. 2022). 

A direct relationship between caeca anatomy and dietary 
carbohydrate content has been observed. For example, 
Longstaff et al. (1988) showed that caeca were heavier and 
longer in birds fed a diet with 200 g/kg pentoses and uronic 
acid than in those fed 200 g/kg glucose. Additionally, Józefiak 
et al. (2006) observed a significant increase in caeca weight 
and contents when a barley diet, with a higher soluble-NSP 
content, was fed than with an oat-based diet. Also, Rehman 
et al. (2008) found that feeding 1% inulin increased caeca 
weight. This highlights that caeca functionality may be 
dictated by the NSP content of the diet. 

Caecal movements

Digesta from the ileum enters the colon, and then a portion of 
this digesta is pushed into the caeca through retrograde anti-
peristaltic movements. Only soluble, low molecular-weight 
molecules can enter the caeca. This was illustrated by 
Björnhag and Sperber (1977), who found that nearly half of 
the particles present in ileal digesta were larger than 
0.2 mm in size, but only 3% of the particles in caeca 
digesta were this large. The materials entering the caeca are 
filtered by a narrow opening and muscular ring of tissue 
anterior to the caecal opening, coupled with a meshwork of 
villi and ridges (Svihus et al. 2013). These materials are 
pushed towards the distal end and mixed by peristaltic 
movements by both circular and longitudinal contractions 
(Sacranie et al. 2007; Janssen et al. 2009). When the caeca 
are full, the amplitude of circular movements increases, 
heightening caecal digesta mixing through moving contents 
from the distal and proximal ends towards each other. Viscosity 
of the digesta influences its ability to enter the caeca. For 
example, Choct et al. (1996) observed that feeding as much 
as 6.6% viscous arabinoxylans into the diet did not increase 
caecal SCFA production, indicating that these materials 
were not able to enter the caeca. Similarly, Langhout and 
Schutte (1996) found that feeding viscous pectin had no 
impact on fermentation, on the basis of caecal SCFA concen-
tration; however, feeding similar quantities of less viscous 
pectin did significantly increase fermentation. 

Digesta retention in the caeca is relatively long, compared 
to retention in other gastrointestinal regions, due to 
infrequent emptying, allowing for increased fermentation, 
and thus heightened SCFA manufacture. This is illustrated 
by Warriss et al. (2004) who observed that digesta was still 
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present in the caeca of broilers that had been fasted for 24 h. 
Synchronised high-amplitude peristaltic movement of both 
the caeca and colon causes the caecal contents to be 
expelled. Antiperistaltic movements occur continuously in 
the colon, moving material from the anal opening into the 
caeca. This has been demonstrated by Sacranie et al. (2012), 
who injected Cr-EDTA soluble marker into the colon and 
observed that it was refluxed into the small intestine. This 
suggests that conditions in the caeca and lower digestive tract 
influence small-intestine microbiota composition. However, 
Glendinning et al. (2019) observed significant differences in 
microbiota composition among the duodenum, jejunum, 
ileum, and caeca, signifying that other factors may play a 
greater role in establishing ileal microbiota composition. 
Further research is warranted into the role that these 
antiperistaltic actions play in digestion of NSP. 

Caeca microbiota composition

The gastrointestinal microbiome is recognised as a functional 
system of the bird, directly influencing animal health, 
productivity, and food safety. The largest concentration of 
microbial cells in the gastrointestinal tract are found in the 
caeca (Bindari and Gerber 2022). Bacteria are the primary 
component of the caeca ecosystem; Glendinning et al. 
(2020) concluded that 98.4% of the caeca microbiome 
originates from bacteria, 0.12% originates from Eukaryota 
(originated from viruses), and 0.31% originates form Archaea 
(single-celled prokaryotes). The most abundant phyla found 
within the caeca of adult birds are Firmicutes (Clavijo 
and Flórez 2018), with Lactobacillus, Ruminococcus, 
Faecalibacterium, and Clostridium being the most dominant 
genera within this phylum (Gong et al. 2002; Paraskeuas 
and Mountzouris 2019). The conformation of the caeca 
microbiota changes throughout the bird’s life, dictated by 
diet and environmental conditions. 

Impact of bird age on caeca microbiota
composition

It is well established that microbiota composition changes 
with bird age, becoming more stable as the bird gets older. 
However, the exact age when it stabilises has yet to be 
determined. The identified bird age that caeca phylogenetic 
diversity stabilises has varied among studies, ranging from 
approximately 20 to 21 days (Torok et al. 2009; Ijaz et al. 
2018; Kers et al. 2020), to 28 days (Lu et al. 2003) to over 
42 days (Richards et al. 2019). Nonetheless, it is well 
established that initial inhabitation of microbes in the 
gastrointestinal tract occurs within the first 72 h post-hatch 
(Fathima et al. 2022; Pottenger et al. 2023). In modern 
commercial birds, the first bacterial inoculum is derived 
from the environment during incubation, hatching and delivery. 
Variability in these early environments explains why initial 
colonisation differs among birds from different hatcheries. 
For example, Kers et al. (2020) and Pedroso et al. (2016) 

presented that species of Clostridiaceae were the dominant 
species in the caeca of newly hatched birds, whereas Ballou 
et al. (2016) found species of Enterobacteriaceae to be the 
most abundant bacteria. Birds are then exposed to more 
diverse microbial environments on the farm, and ingest 
bacteria from the feed, water, and litter. 

As the bird ages, the diversity of the caeca microbiota 
changes (Feye et al. 2020), transitioning from species that 
ferment and digest simple carbohydrates towards more 
complex structures, easing fibre fermentation (Stanley et al. 
2013; Sergeant et al. 2014). This is because bacteria 
populate the upper intestine and remove the readily digested 
fermentable oligosaccharides and soluble polysaccharides, 
leaving the large intestine with NSP that are more difficult 
to digest, such as arabinoxylans and beta-glucans. Ballou et al. 
(2016) and Oakley et al. (2014) found that the caecal microbiota 
switched from being dominated by Enterobacteriaceae to 
being dominated by Firmicutes, such as Clostridiales, within 
the first 7 days of age. Also, Gong et al. (2008) found that 
caecal Lactobacillus content was 100 times higher at 3 days 
of age than at 42 days of age. Moreover, Lu et al. (2003) 
found that the dominant species in the caeca were Clostridium 
saccharolyticum, C. oroticum, and C. orbiscindens at 7 days of 
age, Ruminococcus schinkii and Clostridium indolis at 14–28 
days of age and Eubacterium at 49 days of age. These outputs 
highlight a great deal of transition in caecal microbiota 
composition over the lifespan of the bird, addressing the 
importance of successful early colonisation of the caeca; 
founding of an efficient microbiota in the young bird may 
enhance its ability to face dietary and environmental challenges 
when older. For example, establishing a microbiota in young 
birds that is efficacious at NSP hydrolysis, by increasing the 
abundance of NSP-degrading bacterial species, could enhance 
dietary NSP utilisation when the bird is older. This was 
illustrated by Bautil et al. (2020), who found that supple-
menting wheat-based diets with 0.5% arabinoxylo-
oligosaccharides sped up development of a fibre-fermenting 
microbiome, resulting in increased arabinoxylan solubilisation 
and fermentation in older birds. This approach of priming the 
microbiota in young birds to get targeted results in adult birds 
could potentially increase use of more economic and 
environmentally friendly sources of feed ingredients that 
are otherwise excluded from poultry diets due to their high 
NSP content. For example, Duke et al. (1984) adapted turkeys 
to either a low- or high-NSP diet and found that cellulose 
degradation in the adult bird was higher in those fed the 
high-NSP diet. However, it is not possible to provide a target 
optimum microbiota composition to aim for in young birds, 
because this is very much dependent on the conditions the 
birds are to be reared in. Notably, Stanley et al. (2013) ran 
three successive trials in which birds were obtained from 
the same breeder flock, were fed the same diet, and were 
reared in the same facility, and saw completely different 
caecal microbiota compositions. This suggests that measuring 
absolute values of different species may be meaningless. The 
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focus instead should be on the metabolites being produced 
and functionality of the microbiota. This should include 
measurements of oligosaccharides, focussing on both quantity 
and size/structure, in the diet and caeca. It may also be 
advantageous to measure endogenous enzyme activity, to 
confirm whether the oligosaccharides are stimulating NSP-
degrading microbiota species. 

Impact of dietary NSP on caeca microbiota
composition

NSP are considered anti-nutrients because the soluble 
component increases intestinal viscosity, and the insoluble 
component acts as a nutrient diluent and physical barrier to 
the gastrointestinal lining, thus reducing nutrient digestion 
and absorption (Bedford 2018; Morgan et al. 2021). NSP 
composition of the diet has a notable impact on the confor-
mation of the caeca microbiota. For example, Crisol-Martínez 
et al. (2017) compared wheat- and sorghum-based diets and 
found that Clostridium leptum predominated in the caeca of 
birds fed wheat, whereas strains of Lactobacillus crispatus 
and Lachnospiraceae were the most abundant in birds fed 
sorghum. Moreover, Borda-Molina et al. (2021) and Kim 
et al. (2022) observed that feeding broilers wheat resulted 
in a higher presence of Lactobacillaceae and Bifidobacteriaceae 
in the caeca than did feeding corn. Similarly, Rodríguez et al. 
(2012) observed increased caeca lactobacilli when feeding 
wheat and barley, compared with feeding corn. This is because 
grains such as wheat and barley are richer in NSP, primarily 
xylan and β-glucan, and products derived from hydrolysis of 
these NSP provide substrates for beneficial Gram-positive 
bacteria species. Lactobacillaceae and Bifidobacteriaceae have 
particularly high glycosidase activity, meaning that they can 
readily utilise selective oligosaccharide substrates from 
complex plant cell-wall substrates (Modrackova et al. 2020; 
Shini and Bryden 2022), converting them into SCFA. This 
explains why numerous studies have presented high levels 
of caecal Bifidobacteriaceae and Lactobacillaceae, often 
correlated with improved bird performance, when feeding 
NSP-rich diets to poultry (Apajalahti et al. 2001; Engberg 
et al. 2004; Józefiak et al. 2010; González-Ortiz et al. 
2020). Borda-Molina et al. (2021) also observed increased 
levels of Bacteroides xylanisolvens in the caeca of wheat-fed 
birds. B. xylanisolvens is known to exert xylanolytic activity 
(Mirande et al. 2010), highlighting that feeding xylan 
results in increased proliferation of caecal bacteria that are 
adept at xylan degradation and endogenous xylanase manufacture. 
Moreover, Sergeant et al. (2014), using metagenomic analysis, 
identified a considerable array of genes in the caeca that 
encode for polysaccharide- and oligosaccharide-degradation 
enzymes. This highlights the capacity of the microbiota to 
instigate NSP hydrolysis. The resulting SCFA generated because 
of oligosaccharide fermentation can also directly influence 
microbiota composition. For example, van der Wielen et al. 
(2000) observed a negative correlation between caecal 
Enterobacteriaceae concentration and actetate, propionate 

and butyrate. Additionally, Liao et al. (2020) found that 
Escherichia–Shigella concentration in the caeca was positively 
correlated with isobutyrate, and caeca Salmonella was nega-
tively correlated with isovalerate, butyrate and acetate content. 
These outputs reconfirmed that the microbiota can indeed be 
manipulated to be more efficacious at utilising dietary NSP. 

Impact of NSP-degrading enzymes on caeca
microbiota composition

Undigested nutrients that escape the upper digestive tract, 
due to the presence of NSP, become substrates for the caeca. 
These substrates can fuel pathogenic bacteria species 
(Apajalahti and Vienola 2016). NSP-degrading enzyme 
supplementation combats the anti-nutritional effects of 
NSP, facilitating removal of digestible nutrients from the diet 
early in the digestive tract. The consequence is restricted flow 
of nutrients into the caeca. This forces the caeca microbiota to 
adapt to use NSP as its primary substrate, instead of starch and 
readily fermentable carbohydrates, because NSP is the only 
carbohydrate source available. This highlights the importance 
of developing a microbiota that is efficacious at fibre-degradation 
as soon as possible. Clostridiales are particularly effective at 
degrading plant polysaccharides (Wang et al. 2021; Bedford 
and Apajalahti 2022), suggesting that promoting proliferation 
of this species should be a priority. 

It is common practice to switch diets as a bird grows, so as 
to meet evolving energy and protein requirements. This means 
that birds receive different ingredient combinations as they get 
older, usually increased cereals and reduced protein meals. 
The microbiota is subsequently forced to quickly adapt to 
changes in nutrient availability directly following diet 
changes, as highlighted by Ijaz et al. (2018). The changes in 
NSP content and composition provided during these diet 
transitions are largely ignored, which is concerning given 
that NSP is the primary source of fuel for the caeca, as 
highlighted above. Pathogenic bacteria can proliferate in 
this unstable environment. One approach to minimise the 
likelihood of this is to provide an ongoing supply of fer-
mentable substrates throughout the bird’s lifetime, so that 
the microbiota receives a consistent source of fuel, irrespec-
tive of diet composition (Bedford and Apajalahti 2022). 
Supplementing diets with NSP-degrading enzymes increases 
the abundance of fermentable substrates available, through 
hydrolysis of NSP into oligosaccharides. For example, Rodríguez 
et al. (2012) found that addition of xylanase and β-glucanase 
to wheat- and barley-based diets increased the number of 
bifidobacteria in the caeca. Another approach is to supplement 
the diets with a source of fermentable fibre, such as wheat 
bran or oat bran, ideally in combination with enzymes, or 
to directly supply oligosaccharides. For example, Morgan 
et al. (2022a) observed that supplementing sorghum-based 
diets with 2000 mg/kg xylo-oligosaccharides (XOS), xylanase 
and fermentable fibre (wheat bran) increased caecal SCFA 
concentration and xylanase and cellulase activity in 35-day-
old broilers. The process of developing a microbiota that is 
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efficacious at NSP-degradation takes time, which is why it 
must be established early, and why effects of dietary 
oligosaccharide and NSP-degrading enzyme application 
may only be seen in older birds. 

Role of oligosaccharides as prebiotics

Oligosaccharides contain 2–10 monosaccharide units. These 
monosaccharides can be either linear or branched and are 
connected by α- or  β-glycosidic linkages (Patel et al. 2014). 
Oligosaccharides are manufactured from plant sources, such 
as legumes, wholegrains and some cruciferous vegetables 
and fruits (Mussatto and Mancilha 2007). The NSP in these 
sources is hydrolysed into oligosaccharides, usually in the 
presence of enzymes. A review by Jahan et al. (2022) 
presents the sources and production techniques for common 
oligosaccharides used in poultry diets. Recently there has 
been increased interest into the benefits of supplementing 
poultry diets directly with oligosaccharides produced in vitro, 
as opposed to relying on the bird to manufacture them in situ 
in the digestive tract in the presence of supplemental enzymes 
(Morgan et al. 2019). As highlighted by Jahan et al. (2022) 
and in Tables 1 and 2, supplemental oligosaccharides 
have shown to improve bird gastrointestinal health and 
performance, but there is a lack of consistency among studies 
regarding the magnitude of their impact. This is due to 
variation in the size and structure of the oligosaccharides, 
which directly influences how and which microbiota 
species respond to them. The key issue with research in this 
field is that the majority of researchers do not measure the 
oligosaccharide concentration or composition (e.g. degree 
of polymerisation) in the diet, or in the gastrointestinal 
digesta. This makes it difficult to compare and interpret 
outputs from bird trials testing oligosaccharide efficacy. 
This needs to be rectified. Historically, measuring oligosaccharides 
has been time-consuming and expensive, requiring specialised 
equipment. However, there has been promising advances 
in this field in the past 5–10 years, particularly in analysis 
of XOS (Samanta et al. 2015; Ribeiro et al. 2018; Morgan 
et al. 2020). It is hoped this will improve the quality of 
oligosaccharide research in animal nutrition. Moreover, the 
lack of studies published in this field, particularly in laying 
hens, means that trends cannot yet be identified. A wider 
range of studies, featuring different diets, oligosaccharides 
derived from different substrates, and birds under varying 
degrees of challenge, are required. Availability of new methods 
for measuring oligosaccharides and increased publication of 
robust and repeatable studies in this field will shape develop-
ment of improved and more consistent oligosaccharide products. 

Properties of oligosaccharides

Diet type and enzyme treatment dictate the size and 
physiochemical properties of oligosaccharides. Endo-acting 

NSP-degrading enzymes randomly cleave the backbone of 
the target NSP, generating polymeric fragments. Successive 
hydrolytic events result in production of progressively 
smaller fractions (De Maesschalck et al. 2015). The aim is 
to manufacture oligosaccharides, as opposed to complete 
hydrolysis into monomers; unabsorbed pentose sugars stimulate 
microbial activity in the intestinal tract, causing inflow of 
water into the intestinal lumen via osmosis, resulting in 
increased moisture content in the excreta and potential 
litter-quality issues (Zyla et al. 1999; Mateos et al. 2012). 
Variability observed in response to supplemental oligosaccharides 
may be due to the presence of de-branching and exo-activities 
in the intestinal tract causing oligosaccharides to be broken 
down into constituent sugars, removing their prebiotic effects 
(Bedford and Apajalahti 2022). 

Oligosaccharides generated from hydrolysis of NSP vary in 
degree of polymerisation (DP), monomeric units and types of 
linkages. An example are XOS, which are formed by xylose 
residues linked through β-(1→4)-linkages. The number of 
xylose residues in XOS vary from 2 to 10, forming xylobiose 
(X2; C10H18O9), xylotriose (X3; C15H26O13), xylotetraose (X4; 
C20H34O17) etc. (Morgan et al. 2020). Bacteria species 
vary significantly in their ability to use XOS of differing 
chain lengths (Aachary and Prapulla 2011); for example, 
bifidobacteria show a preference for shorter, un-substituted 
XOS, and struggle to use branched arabino-XOS (Okazaki 
et al. 1990). This was illustrated by Courtin et al. (2008), 
who found that adding 0.2% XOS to broiler diets had no 
effect on caecal enterobacteria and lactobacilli but did increase 
bifidobacteria concentration, after 1 week on the supplement. 
Dale et al. (2020)  also observed that caeca bacteria prefer 
longer oligosaccharides, of DP 3 or larger. This knowledge 
can be used to develop oligosaccharide products tailored to 
specific scenarios, such as stimulating beneficial bacteria 
species that may otherwise be lacking. 

The concentrations and structural features of NSP differ 
widely among different ingredients and batches of the same 
ingredient (Nguyen et al. 2021); for example, the distribu-
tion of branches along the main backbone may be more 
regular for some ingredients than others (Morgan et al. 2020). 
NSP structures also vary within different sections of the grain, 
such as the endosperm compared with the aleurone and bran 
(Burton and Fincher 2014). For example, Olukosi and Bedford 
(2019) found that response of wheat to xylanase varied 
greatly depending on the endosperm structure of the wheat. 
This means that it is not possible to predict in situ oligosac-
charide manufacture in the gastrointestinal tract on the basis 
of the quantity of NSP or fibre measured in the ingredient 
being fed, as several factors influence response to enzyme 
application. Nonetheless, efficacy of NSP-degrading enzymes 
could be assessed by measuring the size and structure of 
oligosaccharides manufactured. This also reiterates that 
direct oligosaccharide application maybe more reliable than 
enzyme application alone. 
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Table 1. Effect of dietary supplementation of oligosaccharides derived from non-starch polysaccharides on poultry caeca microbiota composition.

Oligosaccharide Oligosaccharide
supplementation

(mg/kg)

Species Age Diet Effect Reference

Arabinoxylo-oligosaccharides
(AXOS)

0, 2000 Broiler 10–21 days Wheat–soybean
meal

� No effect of AXOS on microbiota. Keerqin et al.
(2017)

Arabinoxylo-oligosaccharides
(AXOS)

0, 2000 Broiler 10–21 days Wheat–soybean
meal

� No effect of AXOS on microbiota. Morgan et al.
(2019)

Fructo-oligosaccharides
(FOS)

0, 5000, 10 000 Layer 60–65 to
63–68 weeks

Corn–soybean
meal

� Reduced viable number of
Salmonella enteritidis with
10 000 mg/kg FOS.

Adhikari et al.
(2018)

Fructo-oligosaccharides
(FOS)

0, 4000 Broiler 1–35 days Wheat–soybean
meal

� Increased Lactobacillus and reduced
coliform with FOS.

Akbaryan
et al. (2019)

Fructo-oligosaccharides
(FOS)

0, 2000, 4000, 8000 Broiler 1–49 days Corn–soybean
meal

� Increased total anaerobes and
Bifidobacterium with 4000 mg/kg
compared to 0 mg/kg FOS.

� Increased Lactobacillus with 2000

Xu et al.
(2003)

and 4000 mg/g, compared with
0 mg/kg FOS.

� Reduced Escherichia coli with 2000
and 4000 mg/g, compared with
0 mg/kg FOS.

β- galacto-oligosaccharides
(β-GOS)

0, 1000, 2000, 5000 Broiler 0–35 days Corn–soybean
meal

� Increased Lactobacillus with 2000
and 5000 mg/g β-GOS.

� No effect of β-GOS on coliforms

Yousaf et al.
(2017)

and Clostridia.

Isomalto-oligosaccharides
(IMO)

0, 5000, 10 000 Broiler 1–42 days Corn–soybean
meal

� Increased Lactobaccilli and
Bifidobacteria at Day 21 with 5000
and 10 000 mg/kg IMO.

� Increased Lactobaccilli at Day 42
with 10 000 mg/kg IMO.

� Increased Bifidobacteria at Day 42
with 5000 and 10 000 mg/kg IMO.

� Reduced Escherichia coli and total

Mookiah et al.
(2014)

aerobes at Day 21 with 5000 and
10 000 mg/kg IMO.

� Reduced Escherichia coli at Day 42
with 10 000 mg/kg IMO.

Isomalto-oligosaccharides
(IMO)

0, 3000, 6000, 9000,
12 000

Broiler 0–49 days Corn–soybean
meal

� No effect of IMO on microbiota. Zhang et al.
(2003)

Isomalto-oligosaccharides
(IMO), raffinose
oligosaccharides (RFO) and
chitooligosaccharides (COS)

0, 3000 mg/kg (IMO and
RFO) and 30 mg/kg

COS

Broiler 1–56 days Corn–soybean
meal

� Increased Bacteroidetes, Tenericutes,
Euryarchaeota, and Spirochaetae with
IMO in the starter phase.

� Increased Lactobacillus with RFO
and COS.

Chang et al.
(2022)

� Increased Ruminocaceae and
Lachnoclostridium with IMO and
RFO.

Inulin, oligofructoses (OF),
short-chain fructo-
oligosaccharides (SCFOS),
transgalacto-oligosaccharides
(TOS)

0, 4000 Broiler 0–21 days Dextrose–isolated
soy protein

� SCFOS reduced Clostridium
perfringens.

� No effect of the oligosaccharides on
Bifidobacteria, Lactobacilli or
Escherichia coli.

Biggs et al.
(2007)

Xylo-oligosaccharides (XOS) 0, 5000 Broiler 0–39 days Wheat–rye–
soybean meal

� Increased abundance of Clostridium
cluster XIVa with XOS, including
Anaerostipes butyraticus.

� Increased Lactobacillaceae with

De
Maesschalck
et al. (2015)

XOS.

(Continued on next page)
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Table 1. (Continued).

Oligosaccharide Oligosaccharide
supplementation

(mg/kg)

Species Age Diet Effect Reference

Xylo-oligosaccharides (XOS) 0, 100, 200, 300, 400,
500

Layer 28–36 weeks Corn–soybean
meal

� Bifidobacterium spp. increased
linearly with increasing XOS.

� Escherichia coli reduced linearly with
increasing XOS.

� No impact on total bacteria counts
or Lactobacillus.

Ding et al.
(2018)

Xylo-oligosaccharides (XOS) 0, 50, 2000 Broiler 0–35 days Sorghum–soybean
meal

� No effect of XOS on microbiota. Morgan et al.
(2022a)

Xylo-oligosaccharides (XOS) 0, 50, 2000 Layer 39–47 weeks Wheat–corn–
soybean meal

� Bifidobacterium concentration
reduced when feeding 2000 mg/kg
XOS.

Morgan et al.
(2022b)

Xylo-oligosaccharides (XOS) 0, 1000, 2000 Broiler 0–35 days Corn–soybean
meal

� Increased Lactobacillus with
2000 mg/kg XOS.

Pourabedin
et al. (2015)

Xylo-oligosaccharides (XOS) 0, 2000 Broiler 0–10 days Corn–soybean
meal

� Reduced caecal colonisation of
Salmonella enteritidis with XOS.

� Lactobacillus, Roseburia and

Pourabedin
et al. (2017)

Clostridium greater with XOS, in
Salmonella enteritidis-infected birds.

Xylo-oligosaccharides (XOS) 0, 5000 Broiler 0–21 days Corn–soybean
meal

� No effect of XOS on microbiota. Samanta et al.
(2017)

Xylo-oligosaccharides (XOS) 0, 25, 50, 75, 100 Broiler 0–42 days Corn–soybean
meal

� No effect of XOS on microbiota. Suo et al.
(2015)

Xylo-oligosaccharides (XOS) 0, 200, 400 Layer 50–62 weeks Corn–soybean
meal

� Higher Firmicutes and lower
Bacteroidetes with XOS.

� Higher Bacilli, Lactobacillales,
Lactobacillaceae, Lactobacillus,

Zhou et al.
(2021)

Erysipelotrichia, Erysipelotrichales,
Erysipelotrichaceae with 200 mg/kg
XOS.

� Higher Bifidobacteriales (and
derivatives Bifidobacteriaceae and
Aeriscardovia) with XOS.

� Lower Epsilonproteobacteria (and
derivatives Campylobacterales,
Campylobacteraceae,
Campylobacter) with XOS.

Galacto-oligosaccharides
(GOS) and xylo-
oligosaccharides (XOS)

0, 1000 Broiler 1–70 days Corn–soybean
meal

� Reduced diversity of microbiota
with XOS and GOS; increased
Ruminococcaceae, Barnesiellaceae and
Acidaminococcaceae and decreased

Yang et al.
(2022)

Bacteroidaceae and Lactobacillaceae.
� Alistipes dominant with GOS.
� Faecalibacterium and Bacteroides
dominant with XOS.

Prebiotic effects of oligosaccharides

Oligosaccharides are not degraded by gastric acid or digestive 
enzymes and are not absorbed by intestinal mucosa (Abd 
El-Hack et al. 2020). This ensures that they reach the distal 
intestinal tract intact, where they can be fermented by probiotic 
bacteria in the caeca. The beneficial technological features of 
oligosaccharides include stability at acidic pH, heat resistance, 
ability to achieve significant biological effects at low daily 
doses, low calorie content and no toxicity (Carvalho et al. 2013). 

Impact of oligosaccharides on caeca microbiota
composition

Numerous studies have presented that feeding 
oligosaccharides directly modifies the caeca microbiota, as 
highlighted in Table 1. Similar changes to caecal microbiota 
composition have also been observed in response to dietary 
NSP-degrading enzyme application (Józefiak et al. 2010; 
Munyaka et al. 2016; González-Ortiz et al. 2020), verifying 
that the positive effects of application of these enzymes can 
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Table 2. Effect of dietary supplementation of oligosaccharides derived from non-starch polysaccharides on poultry caeca short-chain fatty acid
(SCFA) concentration.

Oligosaccharide Oligosaccharide Species Age Diet Effect Reference
supplementation

(mg/kg)

Arabinoxylo-oligosaccharides 0, 2000 Broiler 16–21 days Wheat–soybean � Increased total SCFA and acetic, Keerqin
(AXOS) meal isovaleric, valeric, succinic and lactic et al. (2017)

acid with AXOS, compared with
feeding 2000 mg/kg arabinoxylan.

Arabinoxylo-oligosaccharides 0, 2000 Broiler 0–21 days Wheat–soybean � Increased total SCFA and acetic, Morgan
(AXOS) meal butyric, isovaleric and lactic acid, et al. (2019)

compared with feeding 2000 mg/kg
arabinoxylan.

Fructo-oligosaccharides (FOS) 0, 4000 Broiler 1–35 days Wheat–soybean � Increased acetic and butyric acid with Akbaryan
meal FOS. et al. (2019)

Fructo-oligosaccharides (FOS) 0, 4100 Broiler 28–42 days Corn starch � Increased valeric acid with FOS. Cao et al.
isolated (2005)
soybean protein

Fructo-oligosaccharides (FOS) 0, 3750, 7500 Layer 100–105 to Corn–soybean � Increased total volatile fatty acids, Donalson
101–106 weeks meal propionate, butyrate, and lactic acid et al. (2008)

with FOS.

Isomalto-oligosaccharides (IMO) 0, 5000, 10 000 Broiler 1–42 days Corn–soybean � Increased total volatile fatty acids Mookiah
meal (VFA), total non-VFA, and acetic, et al. (2014)

butyric, lactic and succinic acid at Day
21 with 5000 and 10 000 mg/kg IMO.

� Increased propionic acid at Day 21 with
10 000 mg/kg IMO.

� Increased total VFA, total non-VFA, and
acetic, lactic and propionic acid at Day
42 with 5000 and 10 000 mg/kg IMO.

� Increased butyric acid at Day 42 with
10 000 mg/kg IMO.

Isomalto-oligosaccharides (IMO) 0, 3000, 6000, Broiler 0–49 days Corn–soybean � No effect of IMO on SCFA Zhang et al.
9000, 12 000 meal concentration. (2003)

Isomalto-oligosaccharides (IMO), 0, 3000 mg/kg Broiler 1–56 days Corn–soybean � Increased butyric acid and valeric acid Chang et al.
raffinose oligosaccharides (RFO) (IMO and RFO) meal with IMO. (2022)
and chito-oligosaccharides (COS) and 30 mg/kg COS

Soybean oligosaccharides (SBO) 0, 500, 2000, Broiler 0–42 days Corn–soybean � Increased formate with 5000 mg/kg Liu et al.
3500, 5000 meal SBO. (2021a)

� Increased acetate with 3500 mg/kg
SBO.

Soybean oligosaccharides (SBO) 0, 6000 Broiler 0–49 days Corn–soybean � Increased acetic and propionic acid Zhu et al.
meal with SBO. (2020)

� Reduced butyric and lactic acid with
SBO.

Xylo-oligosaccharides (XOS) 0, 250, 1000 Broiler 0–29 days Wheat, wheat � Increased total SCFA and acetic, Craig et al.
bran–soybean propionic and n-valeric acid (2020a)
meal concentration with XOS, compared

with feeding xylanase (16 000 XU/kg).

Xylo-oligosaccharides (XOS) 0, 250 Broiler 0–21 days Wheat, wheat � Increased propionic acid with XOS. Craig et al.
bran, corn, (2020b)
wheat germ,
barley–soybean
meal

Xylo-oligosaccharides (XOS) 0, 100, 200, 300, Layer 28–36 weeks Corn–soybean � Linear increase in butyrate and acetic Ding et al.
400, 500 meal acid concentration. (2018)

(Continued on next page)
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Table 2. (Continued).

Oligosaccharide Oligosaccharide
supplementation

(mg/kg)

Species Age Diet Effect Reference

Xylo-oligosaccharides (XOS) 0, 500, 1000 Broiler 0–21 days Corn–soybean
meal

� No significant effect of XOS but tended
(P < 0.01) to decrease isobutyrate
concentration.

Lin et al.
(2022)

Xylo-oligosaccharides (XOS) 0, 50, 2000 Broiler 0–35 days Sorghum–

soybean meal
� Total SCFA and acetic acid higher with
2000 mg/kg XOS, compared with 0 and
50 mg/kg, only when wheat bran

Morgan
et al.
(2022a)

present.
� Butyric acid higher with 2000 mg/kg
XOS, compared with 0 mg/kg, only
when wheat bran present.

� Propionic and succinic acid higher with
2000 mg/kg XOS, compared with
control.

� Valeric acid higher with 2000 mg/kg
XOS, compared with 0 and 50 mg/kg.

� No impact of XOS on formic,
isobutyric, isovaleric or lactic acid.

Xylo-oligosaccharides (XOS) 0, 50, 2000 Layer 39–47 weeks Wheat–corn–
soybean meal

� No effect of XOS on SCFA. Morgan
et al.
(2022b)

Xylo-oligosaccharides (XOS) 0, 1000, 2000 Broiler 0–25 days Corn–soybean
meal

� Increased acetic acid concentration
with 2000 mg/kg XOS.

Pourabedin
et al. (2015)

Xylo-oligosaccharides (XOS) 0, 50, 100 Broiler 0–42 days Corn–soybean
meal

� Increased total SCFA and acetic acid
with 100 mg/kg XOS.

Singh et al.
(2021)

Xylo-oligosaccharides (XOS) 0, 150 Layer 74–82 weeks Corn–soybean
meal

� Increased acetic acid concentration
with XOS.

Xiao et al.
(2020)

Xylo-oligosaccharides (XOS) 0, 2 Broiler 0–42 days Corn–soybean
meal

� Increased acetate and butyrate with
XOS.

Yuan et al.
(2018)

be attributed to oligosaccharide production, not just elimina-
tion of the anti-nutritional effects of NSP. Oligosaccharides 
have bifidogenic properties, promoting the growth of 
beneficial bacteria such as Bifidobacterium adolescentis, 
B. longum, Lactobacillus brevis and L. fermentum (Moura 
et al. 2007; Pourabedin et al. 2015). For example, Ding 
et al. (2018) observed a linear increase in bifidobacteria 
concentration in the  caecum of White Lohmann laying 
hens with increasing dietary XOS supplementation, ranging 
from 0% to 0.05%. This confirmed that oligosaccharides 
cause beneficial bacteria species to be more dominant, 
meaning that they can competitively inhibit the growth of 
harmful bacteria, such as Escherichia coli. This was  also  
illustrated by Xu et al. (2003) who observed that supple-
menting 4 g/kg fructo-oligosaccharides to corn–soybean-based 
diets increased bifidobacteria and lactobacilli and decreased 
E. coli concentration in the caeca of broilers. However, it 
should be noted that a dosage of 4 g/kg oligosaccharides is 
very high; as illustrated in Tables 1–3, most poultry studies 
test lower supplementation levels, rarely exceeding 2 g/kg. 
It may be disadvantageous to supplement high volumes of 
oligosaccharides into research diets, as these diets are likely 

to be unbalanced, and these high quantities would not be used 
in a commercial setting due to costs. Bird studies testing high 
supplementation levels of oligosaccharides are valuable 
for observing the mechanisms of their effect and how 
they respond in the gastrointestinal environment, but it is 
equally important to test levels that could be applied in 
commercial diets. Reduced caecal E. coli has also been observed 
when feeding broilers mannan-oligosaccharides (MOS; 
Baurhoo et al. 2007). However, care should be taken when 
interpreting data from research measuring bird responses to 
MOS, because the source of MOS in these studies is often 
yeast cell walls, as opposed to MOS derived from soybean 
meal. This is important because MOS derived from yeast 
have a different structure and are largely insoluble, so are 
polymeric, not oligomeric (Bedford and Apajalahti 2022). 
Researchers need to clearly define the substrate the oligosac-
charides are derived from, measure the oligosaccharide 
concentration in the diet, and ensure test diets are balanced 
when designing and publishing studies in this field. 

The preference of different bacteria species for different 
oligosaccharides was presented by Rycroft et al. (2001), 
in which in vitro fermentation of seven oligosaccharides 
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Table 3. Effect of dietary supplementation of oligosaccharides derived from non-starch polysaccharides on non-starch polysaccharide (NSP)
utilisation.

Oligosaccharide Oligosaccharide
supplementation

(mg/kg)

Species Age Diet Effect Reference

Arabinoxylo-oligosaccharides
(AXOS)

0, 5000 Broiler 0–35 days Wheat–
soybean meal

� Increased water extractable arabinoxylan
(AX) digestibility, determined in the ileum
and caeca.

Bautil et al.
(2020)

� Total AX in ileum, and water extractable
AX in the ileum and faeces, reduced by
XOS.

Xylo-oligosaccharides (XOS) 0, 250, 1000 Broiler 0–29 days Wheat–
soybean meal

� Increased ileal NSP degradability with
1000 mg/kg XOS (determined from
water-unextractable rhamnose, fructose,

Craig et al.
(2020a)

arabinose and galactose concentration).
� Water-extractable fructose higher with
250 mg/kg compared to 1000 mg/kg XOS.

Xylo-oligosaccharides (XOS) 0, 50, 2000 Layer 39–47 weeks Wheat–corn–
soybean meal

� Increased ileal soluble NSP degradability
with 2000 mg/kg and 10% wheat bran.

Morgan et al.
(2022b)

(fructo-oligosaccharides (FOS), inulin, XOS, lactulose, isomalto-
oligosaccharides, galacto-oligosaccharides (GOS) and soybean-
oligosaccharides) by faecal bacteria was assessed, along with 
resulting SCFA production. All prebiotics were shown to 
increase bifidobacteria numbers, but total bacteria numbers 
were increased only by inulin and XOS. Additionally, it was 
observed that FOS produced the highest populations of 
lactobacilli, GOS resulted in the greatest decrease in Clostridia 
numbers, and caecal SCFA generation was highest with 
lactulose and GOS. Moreover, Yang et al. (2022)  supplemented 
corn-based diets with either 1% GOS or 1% XOS and found that 
Alistipes were the dominant bacteria in the caeca of birds fed 
GOS, but Faecalibacterium and Bacteroides were dominant 
in birds fed XOS. These outputs suggest that there may be 
merit in using more than one oligosaccharide in a diet, to 
fuel a wider range of beneficial bacteria species. Further 
research is warranted into which oligosaccharide combinations 
are optimal, on the basis of the composition of the diet. 

Dietary oligosaccharide application is expected to be most 
beneficial in broilers at an age of approximately day 10–20, 
given that this is when the caeca microbiota is rapidly 
changing, coupled with a likely change in diet from starter 
to grower. This is also the time when the microbiota is 
transitioning from dependence on starch and readily fermented 
carbohydrate sources to NSP, suggesting that nutrient 
availability may be limited, so an extra source of fuel would 
be beneficial. Alongside improved microbiota composition, 
oligosaccharides can also favourably manipulate the physical 
structure of the gut. For example, Ayman et al. (2022) and Li et al. 
(2019) found that supplementing chitosan-oligosaccharides 
into corn-based diets increased intestinal villus height and 
villus:crypt ratio. The mechanisms behind how oligosaccharides 
influence these parameters is not yet understood but could be 
associated with their ability to reduce bacteria proliferation in 

the lumen and produce SCFA, enhancing ability of epithelial 
cells to proliferate. 

Impact of oligosaccharides on short-chain fatty
acid production

Measurement of SCFA concentration in the caeca can 
provide an indicator of NSP degradation. For example, 
Józefiak et al. (2004) observed that grain sources with varying 
NSP compositions responded differently to supplementation 
with combined xylanase, β-glucanase and protease, verified 
on the basis of resulting differing caecal SCFA content and 
concentration. Caecal fermentation of readily fermentable 
carbohydrates, such as starch and saccharides, typically 
results in production of lactate, but utilisation of more 
complex NSP, by families of bacteria species, such as 
Ruminococcaceae and Lachnospiraceae, promotes acetate 
and butyrate production (Mahmood and Guo 2020; Bedford 
and Apajalahti 2022). Lactate produced in the ileum can 
either be directly absorbed and used as an energy source or 
enters the caeca where lactate-utilising bacteria ferment 
it further into another SCFA, usually butyrate (Broekaert 
et al. 2011; De Maesschalck et al. 2015). This cross-feeding 
mechanism is beneficial to the bird because butyrate 
increases intestinal epithelial integrity by fuelling epithelial 
cells, displays anti-inflammatory properties, and increases 
the metabolic activity of the microbial ecosystem (Guilloteau 
et al. 2010; Canani et al. 2011). Luminal pH is also likely to be 
stabilised by the relationship between lactate-producing and 
lactate-utilising bacteria (Belenguer et al. 2006). A more 
acidic pH is favourable in the gastrointestinal tract because 
it prevents colonisation by pH-sensitive pathogenic bacteria, 
thus promoting growth of beneficial bacteria (Fathima et al. 
2022). The high content of SCFA in the caeca means that it 
is usually slightly acidic, ranging from 6.3 to 6.9 in modern 
broilers (Asare et al. 2021). 
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Recent studies have presented beneficial effects of dietary 
supplementation of oligosaccharides on caecal SCFA concen-
tration, as presented in Table 2. Zhu et al. (2022) fermented 
soybean-oligosaccharides using in vitro batch incubation 
inoculated with broiler caecal microbiota and observed that 
oligosaccharides increase SCFA production, namely propionic, 
butyrate and lactic acid, as well as gas production, suggesting 
bacterial growth-stimulating activities. This highlights the 
potential to use in vitro techniques, as opposed to just live-
bird trials, to assess the efficacy of oligosaccharide products. 
Supplementing oligosaccharides into diets has been the most 
common route of administration, but a study by Singh et al. 
(2022) found that injecting 3 mg of xylotriose into broiler 
chicken eggs enhanced production of caecal acetate, butyrate, 
and total SCFA when measured in birds at 28 days of age, 
compared with the control. These studies highlighted the 
direct benefits of oligosaccharides on SCFA production and 
signified the need for research into new techniques and 
methods for assessing, developing, and administering oligosac-
charides to poultry. 

NSP-degrading enzymes stimulate caecal bacteria to 
produce endogenous NSP-degrading enzymes. This was shown 
by Bedford and Apajalahti (2018), Bautil et al. (2021)  and 
Morgan et al. (2019)  who observed that rearing birds on 
diets with xylanase resulted in a caecal microbiome with 
heightened xylanase activity, and generally increased xylan 
degradation. The same has also been observed with direct 
oligosaccharide application into diets; for example, Morgan 
et al. (2022a) observed increased caeca SCFA concentration 
and xylanase and cellulase activity from supplementing 
2000 mg/kg XOS and wheat bran into sorghum-based diets 
fed to broilers. This suggests that the increased SCFA observed 
in the presence of oligosaccharides and NSP-degrading enzymes 
may be an indicator of the ability of these supplements to 
manipulate the microbiome to produce more endogenous 
enzymes, as opposed to just prebiotic effects. The ramifications 
of this on NSP degradability are still unclear, due to a lack of 
studies presenting this data, as highlighted in Table 3. 

Gonzalez-Ortiz et al. (2019) recently proposed a new 
category of feed additives, stimbiotics, defined as products 
with the capacity to stimulate an NSP-degrading microbiome 
to increase NSP fermentability, at doses that are too low to 
contribute in a meaningful manner to an increased SCFA 
content. Supplemental oligosaccharides fall into this category. 
Bautil et al. (2019, 2020) and  Morgan et al. (2022a, 2022b) 
presented the stimbiotic effects of XOS, with low dietary 
concentrations shown to stimulate production of endogenous 
xylanase in the caeca, resulting in enhanced degradation of 
xylan and increased SCFA manufacture. A stimbiotic can be 
the same molecule as a prebiotic, such as an oligosaccharide, 
but stimbiotics are fed at concentrations below that capable 
of directly supporting fermentation (Bedford and Apajalahti 
2022). Moreover, response to stimbiotics can take multiple 
weeks (Morgan et al. 2021), whereas prebiotics are fermented 
straightaway, resulting in SCFA manufacture within hours of 

consumption (Pourabedin and Zhao 2015). Both stimbiotics 
and prebiotics will be used by similar bacteria species, but 
prebiotics are quantitatively fermented by the bacteria into 
SCFA, whereas stimbiotics stimulate growth and activity of 
the bacteria. Further research is warranted into the mode of 
action of stimbiotics, and factors that influence their efficacy, 
such as diet type, environmental challenges and bird age and 
physiological status. 

Conclusions

Oligosaccharides stimulate proliferation of beneficial bacteria 
species in the caeca, resulting in increased production 
of valuable SCFA and heightened degradation of NSP. 
Application of enzymes to generate oligosaccharides in situ 
in the gastrointestinal tract is advantageous, but the effects 
are variable, as they are dictated by the NSP substrate in the 
diet. Direct application of oligosaccharides mitigates this 
issue. However, there is currently a deficit of data presenting 
the effects of oligosaccharide application in poultry. This 
could be attributable to how complex and time-consuming 
it can be to produce and measure oligosaccharides. This 
will improve, given the global interest in finding and testing 
alternative products to in-feed antibiotics, with oligosac-
charides being a key contender. Presently, it is not possible 
to draw strong conclusions about why there is variability 
among studies testing the same oligosaccharide, or fully 
understand the mechanisms behind their effects. This is 
primarily because authors very rarely measure the quantity 
and composition of the oligosaccharides in the test diets. To 
rectify this, robust research trials that measure the oligosac-
charides in the test diets, and preferably also in the digesta, 
need to be conducted. Different diets and scenarios need to 
be examined, as it may be that a more tailored approach to 
oligosaccharide application is required, primarily on the 
basis of the composition of the diet. This information will 
allow improved oligosaccharide products, with prebiotic and 
stimbiotic properties, to be developed for the poultry industry. 
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