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ABSTRACT

Nutritional management in rangeland beef cattle systems prioritises optimal body condition scores
at calving for improved fertility and reproductive success. However, this focus often overlooks
short-term dietary deficiencies before calving, which can lead to adverse outcomes for neonatal
calves. This review explores the effects of beef cow malnutrition during the periparturient period
on colostrum production, lactation onset, and passive immunity transfer to calves. Additionally, it
discusses the long-term impact of such malnutrition on the offspring. By understanding how
nutritional interventions affect the transition from gestation to lactation, it becomes possible to
enhance calf health and survival in arid tropical environments. Commonly occurring short-term
dietary restrictions, particularly protein deficiencies, can disrupt the hormonal equilibrium, resulting
in reduced colostrum volume and quality, hindering calf growth and increasing mortality risks.
Furthermore, dietary restrictions during this period affect critical physiological processes such as
mammary gland blood flow and fetal small-intestine development. The review explores how
these constraints influence colostrum production and immunoglobulin absorption by neonatal
calves. Additionally, it highlights the significance of addressing other common nutrient deficiencies
such as phosphorus and water and investigates the potential benefits of supplementing microbial
products to enhance rumen function and protect cows from inflammation. Ultimately, addressing
malnutrition during pregnancy is essential to prevent negative impacts on offspring performance,
including alterations in carcass composition and muscle marbling. Consequently, cattle producers
who aim for superior muscle marbling in the carcass by using costly genetics should give priority to
enhancing nutritional programs for late-pregnant cows. In conclusion, a comprehensive under-
standing of the effects of malnutrition during the periparturient period on colostrum production,
passive immunity transfer, and overall calf health is crucial for developing effective nutritional
interventions that improve colostrum production, passive immunity transfer, and overall calf
health in rangeland beef cattle systems.

Keywords: beef cattle, calf loss, colostrum, maternal nutrition, passive immunity, pregnancy,
progesterone, rangeland.

Introduction

During evolution, mammals developed survival mechanisms to adapt to changes in 
environmental conditions. One such crucial adaptation is the ability to sense the 
abundance of nutrients and regulate reproduction to minimise herd mortality. Thin cows, 
with body condition scores (BCS) of <3 (1–5 scale), have lower fertility and wean lighter 
calves than do those with greater body reserves (D’Occhio et al. 2019). In the dry tropics, 
especially in northern Australia with one of the most variable climates on the planet (King 
et al. 2020), the continuous and unpredictable cycle of wet and dry years creates a unique 
challenge to beef-cattle producers and nutritionists: how to maintain a cost-effective nutri-
tional program to ensure high reproductive efficiency and the survival of healthy calves? 

The two fundamental steps to developing a sound nutritional program are knowing the 
nutrient supply throughout the year and the requirement of the animals. Both are very 
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difficult to predict in extensive rangeland systems with a 
highly variable climate. The difficulty in predicting nutrient 
supply is easily understood, because pasture availability 
and quality will depend on the climate conditions, mostly 
rainfall. A subtler problem is the definition of nutrient 
requirements for rangeland beef cows. Serial slaughter 
studies can determine the nutrient requirements of the growing 
fetus and monitoring the growth of calves can determine the 
requirements of lactating cows. 

These methods work well in nutritional programs in which 
a diet will be formulated to supply all nutrients required by 
the cows, which is usually not the case in rangeland beef. 
For example, the available literature indicates that pregnant 
Brahman cows during the last month of gestation require 
963 g of crude protein (CP), 70 MJ of metabolisable energy 
(ME) and 15 g of phosphorus (P) per day (NASEM 2016). 
However, given that it is almost certainly not cost-effective 
to supply these amounts in rangeland systems, the important 
question is as follows: what is the impact on lifetime produc-
tivity of supplying less than the calculated requirements? If 
we cannot answer this question, beef cattle producers will 
understandably be reluctant to invest in improving the 
nutritional programs. 

The benefits of improved nutrition are most commonly 
evaluated by the impact on fertility and reproductive perfor-
mance of cows (D’Occhio et al. 2019). Usually, cows with 
good BCS around calving (BCS ≥ 3) are able to maintain 
high fertility, independently of the diet conditions around 
calving, as long as they can replenish body reserves during 
the year (Morrison et al. 1999; Carvalho et al. 2022). 
However, malnutrition during late gestation can potentially 
affect colostrum secretion and milk delivery to calves, 
leading to impaired transfer of passive immunity, high mortality 
rates and reduced calf growth early in life (McGee and Earley 
2019). These effects are not well understood. 

In contrast to other mammals, such as humans, the 
cotyledonary placenta of bovine has three maternal and fetal 
layers, impeding the transfer of maternal immunoglobulin to 
the fetus in the uterus (Weaver et al. 2000). Therefore, calves 
are born with agammaglobulinemia (Weaver et al. 2000; 
Barrington and Parish 2001; Castro et al. 2011) and are 
largely dependent on the passive immunity in the colostrum 
to protect them from infectious diseases before their 
immunity is fully developed (Franklin et al. 2003; Bragg et al. 
2020). The current rates of calf mortality in north Australia 
and the dry tropics, which is >10%, are not acceptable for 
sustainable livestock systems and better nutritional programs 
are an important part of the solution (McGowan et al. 2014). 
Our aim with this review is to discuss the current knowledge 
on the impact of prepartum malnutrition on the neonatal 
transfer of passive immunity in beef calves, with the implicit 
objective to motivate the pursuit of management solutions to 
improve the nutrition of pregnant cows and the health and 
growth of calves. 

The endocrine shift from gestation to
lactation

Before discussing the effects of malnutrition during late 
pregnancy, it is important to note that this is a period of 
drastic and rapid changes in the animal’s metabolism and 
consequently is a time when a cow is more susceptible to 
nutritional and environmental stressors (Abuelo et al. 2019). 
The pregnant cow needs not only to go through the metabolic 
changes necessary to terminate gestation and deliver the fetus 
but also to prepare the mammary gland and the physiological 
apparatus to initiate lactation as soon as the calf is born 
(Drackley 1999). Recently, the high energetic cost of excess 
inflammation and immune activation during the transition 
period has become evident (Bradford et al. 2015; Sordillo 
2016; Horst et al. 2021). Other reviews have described in 
detail the physiological mechanism of both parturition and 
lactogenesis in cattle (Drackley et al. 2005). Our intent here 
is to present the process of how the transfer of immunoglob-
ulins from the maternal circulation into mammary secretion 
occurs during prepartum, as a basis for discussing the 
nutritional modulation of passive immunity transfer. 

The process of colostrum formation, i.e. the transfer of 
immunoglobulins from the maternal circulation into mammary 
secretions during the last weeks of gestation is called 
colostrogenesis, or Stage I lactogenesis (Neville et al. 2002). 
The onset and conclusion of colostrum production have been 
observed to occur approximately 14 days before calving, with 
the rate of colostrogenesis gradually accelerating until peaking 
24–48 h before calving (Sasaki et al. 1976; Baumrucker 
and Bruckmaier 2014). In cows, the main component of 
immunoglobulins is immunoglobulin G1 (IgG1), repre-
senting 90% of the total concentration of immunoglobulins 
(Butler 1974; McGee et al. 2005, 2006). 

The transfer of IgG1 occurs via transcytosis, which involves 
a distinct receptor (Mayer et al. 2005; Baumrucker and 
Bruckmaier 2014). The functioning of these receptors is 
influenced by elevated oestrogens concentrations and reduced 
progesterone concentrations, leading to their activation and 
enhancement (Winger et al. 1995; Barrington et al. 2001). 
The transfer of IgG1 ceases during parturition, coinciding 
with a rapid increase in prolactin concentration in the blood, 
the commencement of Stage II lactogenesis, and the onset of 
copious milk secretion (Barrington et al. 2001; Akers 2006). 
Elevated oestrogen and reduced progesterone concentrations 
are also crucial for initiating lactation, by stimulating the 
release of prolactin from the pituitary gland and increasing the 
density of prolactin receptors in mammary cells (Tucker 2000). 

Apart from IgG1, calcium (Ca) is a vital component of 
colostrum, and its availability can affect colostrum production. 
Cow’s colostrum typically contains approximately 2.1 g of 
Ca per litre, and the secretion of colostrum represents a 
significant withdrawal of blood Ca (Kume and Tanabe 1993). 
In healthy adult cows, approximately 3 g of Ca are present in 
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the plasma, and the abrupt transfer of Ca to the mammary 
gland during the onset of lactation, particularly in high-
producing cows, can lead to a substantial decrease in blood 
Ca concentration, resulting in hypocalcaemia (Goff 2000). 
Increased bone Ca mobilisation and renal reabsorption are 
physiological mechanisms activated during hypocalcaemia 
(Goff 2000). 

Stimulation of Ca mobilisation prior to calving through low 
dietary cation–anion-difference (low-DCAD) diets has been 
demonstrated to increase overall colostrum yield and total 
IgG production without altering colostrum IgG concentrations 
(Graef et al. 2021). Two hormones primarily regulate 
Ca mobilisation around calving, namely, parathyroid 
hormone (PTH) and 1,25-dihydroxycholecalciferol, which is 
a metabolite of vitamin D. The concentration of 1,25-
dihydroxycholecalciferol in circulation increases during late 
gestation and early lactation in response to elevated PTH 
concentration. Both hormones function to raise blood Ca 
concentrations through enhanced absorption in the intestines 
and kidneys, as well as the release of Ca from bones (Goff 
2000). Because Ca and phosphorus (P) work in conjunction 
to form hydroxyapatite, a crucial component of bone 
mineralisation, prolonged exposure of rangeland beef cows 
to diets deficient in P or Ca can deplete bone reserves (Call 
et al. 1986) and affect the availability of Ca during the onset 
of lactation. 

Effect of prepartum nutrition on the transfer
of passive immunity

One of the consistent risk factors causing high rates of beef calf 
mortality in the dry tropics is malnutrition of cows during the 
prepartum period (Fordyce et al. 2023) and it is believed to be 

associated with reduced milk delivery and dehydration of 
neonatal calves (Fordyce et al. 2015). In addition to the 
dehydration effect, low colostrum intake can cause the failure 
of passive immunity transfer to neonatal calves, resulting in 
increased morbidity and mortality rates (McGuirk and 
Collins 2004; Raboisson et al. 2016). Thus, beef calves must 
ingest a minimum of 3 L of high-quality colostrum within 
the initial hours after birth. This colostrum should have IgG 
concentrations exceeding 100 g/L to ensure a plasma IgG 
concentration of at least 24 g/L, which signifies successful 
passive transfer (Dewell et al. 2006; McGee et al. 2006; 
Drikic et al. 2018). In general, beef cows have higher colostrum 
IgG concentrations at first milking than do dairy cows, but 
there is a significant variation among cows (Guy et al. 1994). 
In contrast to dairy cows, there was no variation in colostrum 
IgG concentrations between multiparous and primiparous 
beef cows, but there was variation in the immune status of 
their calves, reflecting the lower colostrum yield in first-
calving heifers (McGee et al. 2006). 

Protein and energy malnutrition often occurs during the 
immediate prepartum period for beef cows in the dry tropics. 
In general, late gestation and colostrogenesis fall during the 
late dry season (1 September until the season break; Bortolussi 
et al. 2005) and there is a significant disparity between 
nutrients supplied by pasture and the cow’s CP and energy 
requirements (Fig. 1). This is particularly problematic for 
CP, which is generally the first limiting nutrient for beef cows 
grazing pasture in northern Australia (Poppi et al. 2018; Dixon 
et al. 2022). The seasonal variation in nutrient supply from the 
pasture is also usually greater for CP (4.5–9.5% DM) than for 
energy (7–9 MJ/kg), as illustrated in Fig. 1. 

The lower supply of protein and energy from pasture to 
prepartum cows can impair fetal growth and metabolism 
(Funston et al. 2010; Blair et al. 2021), and this can be 

Fig. 1. Protein and energy requirements of a Bos indicus cow during the annual cycle. Assuming a mature weight of 480 kg, calving on 1
November and weaning on 1 June. The same range (2–14) is used in the protein and energy Y-axes to illustrate the greater relative variation
in protein requirement and supply during the cycle.
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expressed through lower weight at birth (Larson et al. 2009; 
Chen et al. 2022). The same condition may also reduce the 
IgG1 content in the colostrum. In sheep, a more drastic dietary 
restriction for the last 38 days of gestation decreased colostrum 
yield by 52% (Fig. 2; Nørgaard et al. 2008), even considering 
the excellent BCS of the ewes at the start of the restriction 
period (BCS = 4.5 in a 1–5 scale). McGee et al. (2006) 
changed the diet of multiparous cows from grass silage to 
straw for only the last 15 days of gestation and reported an 
18% reduction in total IgG1 mass in the colostrum (Fig. 2). 
The impact of short-term dietary restrictions on milk delivery 
to newborn calves has also been recently validated by 
measuring calf growth for the first 2 weeks and IgG1 concen-
tration in calf plasma as indicators of colostrum intake (Muller 
et al. 2022; Silva et al. 2022). These studies suggested that 
even temporary deficiencies during the time of calving can 
significantly diminish colostrum production and hinder 
passive transfer. Furthermore, it is noteworthy that the impact 
of malnutrition is not contingent on the BCS of the dam. 

The mechanism by which prepartum malnutrition can 
restrict the transfer of IgG1 into mammary secretions during 
colostrogenesis is unclear (McGee et al. 2006). However, it is 
likely to be associated with alterations in progesterone and 
oestrogen concentrations in the week leading up to calving 
(Silva et al. 2022). Insufficient prepartum nutrition can delay 
the decline in progesterone concentrations before calving 
(O’Doherty and Crosby 1996; Silva et al. 2022), which has 
been found to inhibit the transfer of IgG1 into colostrum 
and impede milk production (Baumrucker and Bruckmaier 
2014; Gross et al. 2014). 

Severe nutrient restriction during the prepartum may also 
influence the mammary gland blood flow and supply of 
nutrients. Kennedy et al. (2019) found that when late 
gestational beef cows were provided a low-protein diet (5.1% 
CP, ad libitum access to corn stover and corn silage), the 
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Fig. 2. Effect of prepartum diet restrictions on total colostrum yield.
Data from Nørgaard et al. (2008) and McGee et al. (2006).

ipsilateral mammary gland blood flow was significantly lower 
than in cows that were supplemented with corn dried-distiller’s 
grains plus solubles at a rate of 0.30% of their bodyweight 
(1.76 ± 0.30 L/min vs 2.76 ± 0.30 L/min). Milk yield was 
also lower in the protein-restricted-diet cows than in supple-
mented cows (10.2 kg/day vs 13.5 ± 1.2 kg/day). Similar 
results on reduced blood flow to the mammary gland were 
reported in a recent study with Hereford–SimAngus heifers 
receiving 70% of calculated requirements (Redifer et al. 2022). 

In the dry tropics, the prepartum period also coincides with 
elevated ambient temperatures. Reduced blood flow to 
internal organs is a well known consequence of heat stress 
in cattle (Sejian et al. 2018). In dairy cows, heat stress 
during the dry period can reduce mammary cell proliferation 
(Tao et al. 2012) and also reduce feed intake and milk 
production (Cowley et al. 2015). In beef cows, because their 
average threshold of temperature–humidity index is higher, 
and can decrease the body temperature through decreasing 
feed intake, increasing water intake, panting and urina-
tion, the thermoneutral zone is higher than in dairy cows 
(Summer et al. 2019). Brody (1956) reported that the milk 
yield of Brahman cows decreases by approximately 1 kg/day 
when the ambient temperatures increase from 35°C to 43°C. 
Thus, the combination of heat stress and nutrient restriction 
during the late dry system may reduce milk production via 
a reduction in the supply of nutrients for milk synthesis 
as well as a reduced uptake and transfer of IgG1 by the 
mammary gland (Davis and Collier 1985; Wall and McFadden 
2012). 

The successful transfer of passive immunity relies not only 
on the quantity and quality of colostrum produced by the cow 
but also on the calf’s ability to ingest colostrum and the 
intestinal capacity of newborn calves to absorb IgG1 (Weaver 
et al. 2000). Insufficient maternal nutrition during late 
gestation can affect both factors and often leads to lower 
birth weights, which can result in reduced calf vigour and 
delayed initiation of suckling (Kim et al. 1988; Riley et al. 
2004; Hogan et al. 2022). Once colostrum is ingested, the 
enterocytes in the small intestine absorb IgG1 through pinocy-
tosis and transfer it across the intestinal barrier into lymphatics 
via exocytosis (Broughton and Lecce 1970; Staley et al. 1972). 
Subsequently, IgG1 enters the bloodstream through the 
thoracic duct (Weaver et al. 2000). 

The closure of IgG1 absorption occurs when the small 
intestine can no longer absorb macromolecules and transfer 
them into the bloodstream (Lecce and Morgan 1962), usually 
about 24 h after birth (Godden et al. 2019; McGee and Earley 
2019). The gut-closure mechanism is unclear (Weaver et al. 
2000). However, this process seems to be associated with 
the depletion of the pinocytotic activity, or the enterocytes 
being replaced with mature epithelial cells (Lopez and 
Heinrichs 2022). The absorption and transfer capacity of the 
small intestine in neonatal calves may also be associated with 
the development and maturation of the small intestine during 
the intrauterine stage. 
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Prepartum nutrition restriction can impair intestinal 
development of the fetus (Duarte et al. 2013) and reduce 
the ability of newborn calves to absorb IgG1 (Blecha et al. 
1981). In sheep, low protein content in the diets during 
pre-lambing decreased the lamb’s efficiency to absorb IgG 
during the first 18 h of age (O’Doherty and Crosby 1997). 
Blecha et al. (1981) found that although there was no effect 
of increased CP consumption on circulating IgG in maternal 
serum or colostrum, CP intake below 0.61 kg/day (1.6 g/kg 
liveweight, LW) can reduce the ability of calves to absorb 
IgG. All the calves in this study were removed from the dam 
and fed commercial colostrum, so this was a direct effect of 
the lack of protein on gut development and function, rather 
than an interaction between colostrum and the calf. 

Alterations in the plasma cortisol concentration of 
neonatal calves may also affect the precocious closure of the 
small intestine to macromolecules and reduce IgG1 absorption. 
Cortisol and other glucocorticoids stimulate tight junction 
and mucosal formation in neonatal calves (Hulbert and Moisá 
2016) and increase brush border enzymes such as sucrase, 
alkaline phosphatase and cell-membrane transporters such 
as Na+/K+ATPase (Guiraldes et al. 1981). Cortisol produced 
by the fetus increases as the fetal hypothalamic–pituitary– 
adrenal axis matures in the last 3–7 days before calving 
(Taverne et al. 1988; Schuler et al. 2018) and the cortisol 
peak about the time of calving seems to be beneficial to 
enhance the initial rate of IgG1 absorption (Hough et al. 
1990a). In contrast to this beneficial effect of elevated cortisol, 
prepartum dietary restrictions increase plasma cortisol and 
reduce triiodothyronine (T3) concentrations in newborn 
calves, and reduce the absorption efficiency and the plasma 
IgG1 concentration (Burton et al. 1984; Hough et al. 1990b; 
LeMaster et al. 2017). Likely, the lower IgG1 absorption 
efficiency in the small intestine of calves born from nutrient-
restricted cows is related to lower birth weight and immaturity 

of the intestine rather than a direct inhibitory effect of elevated 
cortisol concentrations. 

From the discussions above, it is apparent that prepartum 
malnutrition can cause severe impacts on the calf’s growth 
and survival (Fig. 3). One possible mechanism involves 
reduced nutrient supply, which is likely to be linked to 
decreased blood flow to both the uterus and the mammary 
gland (Kennedy et al. 2016, 2019). The lower nutrient supply 
can result in reduced birth weight and diminished colostrum 
production. The second potential mechanism is characterised 
by elevated progesterone concentrations and decreased 
oestrogen concentrations in the blood in the weeks leading 
up to calving. As a result, the transfer of IgG1 into mammary 
secretions is hindered, leading to reduced colostrum quality 
and potential failure in the transfer of passive immunity. 
Additionally, as a third potential mechanism, an increase in 
cortisol concentrations in both the cow and newborn calf 
can diminish the ability of the small intestine to absorb 
IgG1 and delay milk production and delivery. 

Phosphorus

Because of low soil fertility, mineral deficiencies, especially P, 
are common across the dry tropics (McCosker and Winks 
1994). Therefore, the cattle industry has invested considerable 
resources in determining cattle P requirements and the most 
cost-effective supplementation strategies (Dixon et al. 2020). 
Nonetheless, there is limited information on the effect of P 
supplementation on colostrum production and the transfer of 
passive immunity. To our knowledge, no study has evaluated 
the direct effect of P deficiency on the transfer of passive 
immunity in grazing cattle. 

There is evidence that calf mortality is increased when 
cattle are in P-deficient pastures, as measured by faecal P 

Poor prepartum nutrition 

Low amino acids supply 

Increased inflammation/oxidative 
stress in cow and conceptus 

Reduced blood flow to the uterus 
and mammary gland 

Elevated cortisol in cow and 
newborn calf 

Elevated progesterone 
Reduced estrogen Embryonic/fetal death 

Low birth weight 

Prolonged labour 

Delayed milk delivery 

Poor colostrum quality 

Reduced colostrum yield 

Reduced intestine absorption of IgG 

Low IgG in calf serum 

High calf mortality 
Slow calf growth 

Fig. 3. The negative impacts of inadequate prepartum nutrition on the transfer of passive immunity and calf health.
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(Fordyce et al. 2023), which could be linked to delayed 
colostrogenesis leading to dehydration and death of the calf 
(Muller et al. 2022). However, a recent experiment in 
northern Australia with long-term P deficiency in grazing 
cows did not find statistically significant differences in calf 
mortality between supplemented and non-supplemented cows 
(17% vs 22% of calf loss, P > 0.05), despite large differences 
observed in cow liveweight and weaning weight of calves 
(188 kg vs 155 kg LW at weaning for the supplemented and 
non-supplemented group respectively; Schatz et al. 2023). 
Transfer of passive immunity was not evaluated. 

It has been well established that P-deficient cattle have 
lower DM and energy intake, leading to cows with lower 
LW and BCS at calving (Benvenutti et al. 2015; Dixon et al. 
2016). Also, a lower BCS at calving and lower DM intake 
reduce colostrum and total mass of IgG yields (Odde 1988; 
Shearer et al. 1992; McGee et al. 2006). Therefore, it is 
reasonable to expect that prepartum P supplementation would 
increase colostrum production and transfer of passive 
immunity in P-deficient cattle, especially when considering 
the significant increase in P requirements during late 
gestation and early lactation (CSIRO 2007). However, mature 
cows can mobilise bone P stocks to supply the deficit during 
the prepartum period and maintain similar colostrum and 
milk production (Valk et al. 2002; Dixon et al. 2020). It is 
only in extreme situations when body P reserves are depleted, 
that a lack of P can result in lighter birth weight of calves 
(Read et al. 1986a), lower milk yield and lower calf growth 
(Read et al. 1986b; Schatz et al. 2023), potentially increasing 
the risk of calf mortality. Therefore, in most situations, the 
short-term supply of P supplements about the time of calving 
is expected to have minimal impacts on colostrogenesis 
and the transfer of passive immunity. 

Microbial products

The health status of pregnant cows during the calving period 
can have a significant impact on colostrogenesis and milk 
yield, because inflammatory processes during this time may 
divert energy away from colostrum and milk synthesis 
(Horst et al. 2021). The metabolic status of prepartum dairy 
cows has been shown to influence colostrum quality, with 
cows under higher metabolic stress, as measured by higher 
lameness score and higher serum activity of glutamate 
dehydrogenase (GLDH), having lower colostrum quality 
(Immler et al. 2021). Therefore, microbial products, including 
prebiotics, probiotics, and postbiotics, have been used in an 
attempt to modulate the immune response of cows during 
the periparturient period (Barreto et al. 2021). 

These microbial products contain antioxidants, B vitamins, 
nucleotides, amino acids, soluble fibre, and other bioactive 
compounds that can serve as direct nutrient sources, growth 
promoters for rumen microflora, and protect the gut wall 

(Zaworski et al. 2014). Certain components of yeast, such 
as beta-glucan, can agglutinate harmful bacteria, protecting 
the host from infection and the need for an immune 
response (Zanello et al. 2011). 

In ewes, supplementation with live yeast during the 
last month of gestation increased colostrum IgG and other 
bioactive molecules (Dunière et al. 2022). This improvement 
in colostrum composition translated into higher serum IgG in 
lambs born from supplemented ewes and kept with their 
mothers for only 12 h, while no effect of supplementation 
was observed in the lamb group that stayed with the dams 
(Dunière et al. 2022). In dairy cows, supplementation with 
a yeast fermentation product during the transition period 
enhanced mucosal immunity and humoral immune response, 
without a positive effect on colostrum IgG (Yuan et al. 2015). 
In another similar study, the inclusion of yeast-fermentation 
products during the transition period decreased serum cortisol 
on the first day after calving, increased milk production, and 
decreased milk somatic cell count (Zaworski et al. 2014). The 
same beneficial effect on milk somatic cell count, reflecting the 
immune modulation, was reported by Yuan et al. (2015). 

There is limited information on the effects of microbial 
products on the inflammatory response of grazing beef 
cows. The inclusion of yeast-fermentation products in the 
protein supplement has been shown to enhance transfer of 
passive immunity in Bos indicus cows (Silva et al. 2022) fed 
with low-quality hay. Taken together, these studies suggested 
that although protein and energy are the limiting nutrients 
during the prepartum period, the addition of microbial 
products can assist in the transfer of passive immunity by 
either improving rumen efficiency, protecting the cow from 
the negative effects of inflammation, or both. 

Nonetheless, for microbial products to be useful as 
additives in cattle supplements, they need not only to promote 
nutritional and health benefits and be cost-effective but also 
to maintain activity during the supplementation period. 
Variations in moisture and temperature, as well as mixing 
with other toxic compounds (e.g. copper), can cause cell death 
and reduce the viability of active dry microbes (Sullivan and 
Bradford 2011). Micro-encapsulation and drying technologies 
and the use of yeast cultures instead of live cells have emerged 
as solutions to improve the stability of microbial products 
(Chaucheyras-Durand and Dunière 2020). 

Water-restriction impact on milk delivery to
neonatal calves

It is not uncommon for cattle in extensive grazing systems to 
experience some degree of water deprivation as water is not 
freely available, and cattle may drink only once daily or every 
other day (Squires 1981; Williams et al. 2019). Because of the 
high cost of installing water points in large paddocks, the 
frequency and distribution of water points are determined 
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on the basis of the manipulation of grazing distribution and, in 
some regions, such as the northern forest in Australia, 
distances between water points greater than 3 km are not 
uncommon (Hunt et al. 2014; Cowley et al. 2020). Therefore, 
in inadequately managed paddocks, the malnutrition of late-
pregnant cows is usually associated with large distances between 
water points, creating a compounding risk effect for impaired 
milk production and transfer of passive immunity to calves. 

There is a scarcity of studies evaluating the direct impact of 
water restriction on colostrum yield and the transfer of 
passive immunity in ruminants, and almost no information 
on the impact on rangeland beef cows. It has been recognised 
that severe water deprivation reduces milk production in 
other lactating ruminants, such as dairy cows (Golher et al. 
2021), sheep (Chedid et al. 2014; Casamassima et al. 2018) 
and goats (Aganga 1992), and that the reduced milk yield 
is part of the survival mechanism, which is likely to be 
caused by a combined effect of lower DM intake and changes 
in blood osmolarity (Olsson 2005; Ocak Yetisgin and Şen 
2020). In dairy cows, a decline of 50% in voluntary water intake 
resulted in a 26% reduction in milk yield (Little et al. 1980). 

Only one study was identified that quantified impacts of 
water restriction during late pregnancy on colostrum secre-
tion in either sheep or cattle. Mleil et al. (2012) reported 
that giving water only every 3 days during the last 50 days 
of pregnancy and the first 60 days of lactation increased the 
bodyweight loss of postpartum Barbarine ewes (a breed 
native to arid lands) by 19% and reduced by 26% the milk 
yield on Day 10 of lactation (first measurement after birth). 
The secretion of colostrum during the first 24 h was numeri-
cally lower by 25% (627 g/h compared with 832 ± 350 g/h); 
however, despite being biologically relevant, this difference 
was not statistically significant (P > 0.05) and the growth 
rate of lambs was not affected by the water restriction. 

A similar effect of water restriction in magnifying the 
problems of malnutrition during late pregnancy was observed 
by Nicholson (1987) in southern Ethiopia. Water restriction 
depressed birth weights of calves by 2–5 kg, and the weight 
and condition of lactating cows declined more rapidly during 
the dry season than did those of cows given daily access to 
water, likely reflecting lower intake during the prepartum 
period. Water restriction reduced the milk intake of calves by 
15%, as measured by the 210-day weaning weight (Nicholson 
1987). Despite the observed negative effects of water restric-
tion on late-pregnant cows, because less frequent drinking did 
not affect calving rates or the growth of steers, Nicholson 
(1987) concluded that giving water only every 3 days can 
be undertaken indefinitely with all classes of stock. 

The conclusion of the Nicholson (1987) study highlighted 
the complexities involved in evaluating the impact of inade-
quate nutrition during pregnancy on long-term productivity. 
Previous experiments with beef cattle have consistently 
demonstrated that restricting water access from daily to 
every second or third day reduces both total water and feed 
intake, elevates the risk of LW loss, and is likely to decrease 

milk production (Williams et al. 2017), although the effect 
on milk-solid yield is unknown. However, the effect of water 
restriction on cattle LW production remains unclear and incon-
clusive, precluding producers from making informed financial 
decisions regarding investments in water-infrastructure 
improvements. 

It is evident that pregnancy and lactation increase the 
water requirements of cows, and so does high ambient 
temperature (Winchester and Morris 1956; NRC 1981). 
During the last trimester of pregnancy, the combined effect of 
increased intake, fetal growth, and high ambient temperatures 
elevates daily water requirements from approximately 32–50 L 
(Fig. 4). Therefore, it is reasonable to expect that improving 
water infrastructure can increase milk delivery and neonatal 
calf health (Bell and Sangster 2023; Fordyce et al. 2023). 
However, this hypothesis is yet to be tested. 

Long-term effects of prepartum malnutrition

In northern Australia, Brazil and other tropical regions, 
Wagyu and other B. taurus genetics are becoming increas-
ingly incorporated into the beef herd and, with their 
comparatively higher growth and marbling potential, the 
impact of maternal nutrition may persist into later life 
(Greenwood 2021). Thus, it is important to understand how 
restricted maternal energy or protein intake will affect 
offspring growth and meat quality. As discussed, impairments 
in milk delivery and the transfer of passive immunity can have 
long-term effects on offspring performance (Fischer-Tlustos 
et al. 2021). In addition, lack of nutrients during pregnancy 
can affect fetal programming and promote epigenetic changes, 
also associated with reduced offspring performance, including 
a compromised immune system, increased fat deposition, 
slower growth rates, reduced meat quality, reduced muscle 
mass and lower reproductive outcomes (Robinson et al. 2013; 
Bell and Greenwood 2016). Thus, it is difficult to separate the 
effects of overall maternal lactational performance, failure 
of passive immunity transfer, fetal programming and true 
epigenetic changes. 

Prepartum malnutrition that results in intrauterine growth 
retardation results in calves that are lighter than their peers in 
the same cohort at any given age (Greenwood and Cafe 2007). 
Restricting energy and protein supply during the 2nd and 
3rd trimesters of Angus cows carrying calves with either 
Piedmontese or Wagyu sires resulted in a 35% reduction in 
birth weight (Greenwood et al. 2005, 2006). Even once 
adequate levels of nutrition were restored, the growth rates 
from birth to weaning were 8.7% lower than those with 
adequate prenatal nutrition (Cafe et al. 2006). This could 
be explained by carry-over effects on the dam’s lactational 
performance or a reduction in the capacity of the progeny 
to achieve compensatory growth. At feedlot entry (26 months) 
steers were still significantly lighter than their high birth-weight 
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Fig. 4. Water requirements during the annual cycle of a Bos indicus cow in three locations with different
annual average temperatures. Assuming a mature weight of 480 kg, calving on 1November and weaning on 1
June. Estimated using equations from Winchester and Morris (1956).

counterparts and had lower average daily gains until feedlot 
exit at 30 months (Fig. 5). Carcass weights at 30 months were 
reduced and retail yield was 7% lower for low birth-weight 
steers (Greenwood et al. 2006). When adjusted for differences 
in carcass weight, carcass traits between the two groups, 
including marbling, did not vary, other than rump fat cover 

(P8 fat), which was significantly increased in low birth-
weight steers when slaughtered at 30 months (Fig. 5). 

Other studies have reported that supplementing cows in 
the last trimester of gestation with either protein or energy 
can improve the carcass quality of steers, even if there are 
no effects on LW or feed efficiency. Larson et al. (2009) 

Fig. 5. Summary of results from the Australian Beef Co-operative Research Centre, showing the impacts
of reduced nutrition during the 2nd and 3rd trimesters on growth and carcass parameters of steers with
Piedmontese orWagyu sires entering the feedlot at 26 months, Cafe et al. (2006), (2009); Greenwood et al.
(2006).
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found that protein supplementation significantly improved 
marbling scores and carcass quality. Supplementing dams 
with an average of 0.45 kg/day of a 28% CP supplement 
(0.13 kg CP/day) resulted in an 11% improvement in marbling 
grade and more carcasses qualifying for higher USDA quality 
grades. Variability in marbling can be attributed to the varia-
tion in both the number and size of intramuscular adipocytes. 
Administration of targeted supplements during crucial stages 
of adipocyte development in dams can lead to an improve-
ment in marbling scores (Ladeira et al. 2018). 

The timing of the supplementation appears to have an 
impact on how fetal programming occurs. A shorter, more 
intensive period of supplementation in late gestation, when 
the fetus is at a critical growth point, seems to be more 
effective than supplementing at a lower level of intake 
over the entire year or pregnancy (Palmer et al. 2022a). 
Concentrating dried distiller-grain supplementation into the 
first part of the third trimester improved marbling scores 
when compared with lower levels of supplementation over 
the whole third trimester (Palmer et al. 2022b). 

Malnutrition during all stages of pregnancy can negatively 
affect growth and carcass traits. Targeted supplementation of 
pregnant cows during late gestation, when fetal muscle fibre 
hypertrophy and adipocyte proliferation are occurring (Du 
et al. 2010), can increase the feedlot performance of their 
progeny (Cafe et al. 2006; Greenwood et al. 2006; Palmer 
et al. 2022a). These effects have not been tested on the 
B. indicus x B. taurus genotypes that make up the majority 
of the northern Australian beef industry. 

Conclusions

In northern Australia and the dry tropics, late-pregnant beef 
cows are often under nutritional and environmental stress. 
The success of the nutritional program is usually evaluated 
by the reproductive performance of the cows, with few 
studies evaluating the impact on the newborn calf. Current 
research demonstrated that severe diet restrictions about 
the time of calving can cause endocrinal changes and impair 
colostrogenesis and the transfer of passive immunity to calves. 
Moreover, inadequate nutrition and higher cortisol concen-
trations during the periparturient period can impair fetal 
intestine development and reduce immunoglobulin absorption 
in newborn calves. Thus, malnutrition during late pregnancy 
and early life can have long-lasting effects on calf performance, 
including changes in carcass composition and muscle marbling. 

Despite these advances in the current knowledge on the 
nutritional modulation of colostrogenesis in grazing beef 
cows, crucial areas for improvement remain largely unknown. 
Specifically, the impact of restricting specific dietary compo-
nents such as water, energy, protein, lipids, minerals, and 
vitamins is not well understood, hindering the development 
of targeted supplementation strategies and infrastructure 

investments. How improved nutrition and the use of active 
compounds can protect cows from costly inflammatory 
responses is another area of active research. Nonetheless, the 
increased concern for the wellbeing of livestock is motivating 
the industry to find solutions to reduce the nutritional and 
environmental stress currently faced by pregnant beef cows. 
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