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Parameter Meaning Value Unit 

 Speciation   

pHinfluent Acidity of the influent  unitless 

pB Buffering capacity  unitless 

pH Acidity of the medium in the aeration tank  unitless 

pKa Acid dissociation constant of CEC  unitless 

ΔGBOD
‡ Activation energy for degradation of BOD 25 kJ⋅mol-1 

cBOD Stoichiometric conversion factor for conversion of BOD to H+ 1 unitless 

[BOD] Biological oxygen demand of influent  kg⋅L-1 

T  Temperature  Kelvin 

R Ideal gas constant 8.314⋅10-3 kJ⋅mol-1⋅Kelvin-1 

 Sorption   

[COD] Chemical oxygen demand in primary influent  kg⋅L-1 

[TSS] Concentration of total bio-inactive suspended solids in primary influent  kg⋅L-1 

KTSS/W Equilibrium constant for sorption of CEC to TSS  L⋅kg-1 

KOM/W Equilibrium constant for sorption of CEC to organic matter in TSS  L⋅kg-1 

ΔGOM/W Free energy for sorption of CEC to organic matter in TSS  kJ⋅mol-1 

ΔGh Hydrophobic component of ΔGOM/W  kJ⋅mol-1 

ΔG± Ionic exchange component of ΔGOM/W for cationic CECs 5.5 kJ⋅mol-1 

fOM Fraction of TSS that contains carbon 1 unitless 

ρ Density of TSS 1.4 kgL-1 

hOM/hOct Effectivity of hydrophobic binding to TSS over octanol 0.3 unitless 

ΔGOct/W Free energy of moving a CEC from water phase to octanol phase  kJ⋅mol-1 

KTSS/W,CECn  Equilibrium constant for sorption of neutral CEC species to TSS   L⋅kg-1 

KTSS/W,CECion Equilibrium constant for sorption of charged CEC species to TSS   L⋅kg-1 

KOM/W,CECn  Equilibrium constant for sorption of neutral CEC species to OM   L⋅kg-1 

KOM/W,CECion Equilibrium constant for sorption of charged CEC species to OM   L⋅kg-1 

 Biodegradation   

ΔGEFSA
‡ Average EFSA activation energy 65.4  kJ⋅mol-1 

ΔGCEC,redox
‡ Redox-dependent contribution of CEC to average EFSA act. energy  kJ⋅mol-1 

kCEC 2nd order rate constant for biodegradation of CEC  L⋅mol-1hr-1 

kEFSA Log-average 2nd order rate constant for biodeg. of CECs by EFSA  L⋅mol-1hr-1 

ACEC Frequency factor of CEC  L⋅mol-1hr-1 

AEFSA Log-average frequency factor of CECs by EFSA  L⋅mol-1hr-1 

HRT Hydraulic retention time of the mixing aeration tank  hours 

kCEC,n 2nd rate constant for biodegradation of neutral CEC species by QSPR calc.  L⋅mol-1hr-1 

kCEC,ion 2nd rate constant for biodegradation of charged CEC species by QSPR calc.  L⋅mol-1hr-1 

kCEC,QSPR Apparent 2nd rate constant for biodeg. of CEC as function of pH (QSPR calc.)  L⋅mol-1hr-1 

kEFSA,QSPR Average 2nd order rate constant for EFSA CECs by QSPR calculation  L⋅mol-1hr-1 

 Acclimation   

vCEC Stoichiometric ratio for production of active CEC-degrading biomass  unitless 

[CEC]influent Concentration of CEC in the WWTP influent  mol⋅L-1 

[CEC]EFSA Log-average of concentration of CECs as used by EFSA in biodeg. exps. 3⋅10-6 mol⋅L-1 

[CEC]W Concentration of CEC in the mixing aeration tank  molL-1 

[ECEC] Active CEC-degrading biomass induced by CEC  mol⋅L-1 

[CEC]effluent Concentration of CEC in the effluent water of the aeration tank  mol⋅L-1 

k 1st rate constant for biodegradation of CEC in aeration tank  hours-1 

Removal Percentage of [CEC] removed by biodegradation in the aeration tank  % 

β Microbiota diversity Fitted result unitless 

k50 1st order rate constant at which aerobic tank removes 50% of [CEC] Fitted result hours-1 
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Figure S1. Schematic representation of the processes parametrized in this study. Tick marks on the x-axis represent 4 21 
different temporal domains (not to scale) over which the local equilibrium assumption (LEA) assumption was applied. 22 

  23 



S1. Acidity (fastest) 24 

According to the local equilibrium assumption (LEA), we describe the parametrization of the 25 

fastest process first [1]. We assume that, with respect to sorption (Section S2), pH speciation is 26 

effectively instantaneous. In absence of (in situ) experimental (monitoring) data for pH and buffering 27 

(B) capacity, we calculated the pH according to: 28 

Eq. S1    𝑝𝐻 = 𝑝𝐻𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 + (𝛥𝐻𝑅𝑇𝑝𝐻 − 𝑝𝐵) 29 

The endemic pH (pHinfluent) of the wastewater is 7.4-7.8 under which, on average, all WTTPs 30 

(optimally) operate.  31 

The pH values, however, are subject to changes as a result of nitrification prior or during the 32 

treatment [2, 3]). E.g., nitrification (oxidation) of NH4
+ produces H+, 33 

Eq. S2    2𝑁𝐻4
+ +  4𝑂2 → 2𝑁𝑂3

− + 2𝐻2𝑂 + 4𝐻+ 34 

and decomposition of organic carbon produces carbon dioxide as an oxidation product: 35 

COx+O2→CO2+xO, with a maximum stoichiometry (c) of 1, and rates related to the oxidation state 36 

(~x) of BOD (2±2) in wastewater, relative to CO2 (4). The influence of temperature on Eq. S2 is 37 

equivalent to that of ΔG‡
met/RT (Eq. S6). CO2 in turn can acidify the wastewater via Eq. S3-5, 38 

intricately linking pH, BOD and N status: 39 

Eq. S3    𝐶𝑂2(↑) + 𝐻2𝑂 ⇌ 𝐻2𝐶𝑂3            40 

Eq. S4    𝐶𝑂2(↑) + 𝐻2𝑂 + 𝐶𝑂3
2− ⇌ 2𝐻𝐶𝑂3

−            41 

Eq. S5    𝐶𝑂2(↑) + 𝑂𝐻− ⇌ 𝐻𝐶𝑂3
− 42 

in which all species participate with stoichiometries c of 1.  43 

pH and dissolved O2 determine the redox state of the wastewater; hence, [O2] and O2 44 

consumption are indicators of pH. Therefore, we calculated acidity (pH) changes (Δ) from changes in 45 

BOD, including changes in concentrations of NH4
+ [4, 5]. We assume O2 levels to be in excess and 46 

constant, so that BOD corresponds to C/N to be oxidized. 47 

We determined the effective stoichiometries c for [H+] production in wastewater treatment 48 

semi-empirically, by solving rate equations: 49 

Eq. S6    10𝛥𝐻𝑅𝑇𝑝𝐻−𝑝𝐵 = ∫[𝐻+](𝑡) 𝑑𝑡 ∝ 𝑒−(
Δ𝐺𝐵𝑂𝐷

‡

𝑅𝑇
) ⋅ [𝐵𝑂𝐷]𝑐𝐵𝑂𝐷  50 

Wherein [O2] is in excess (hence, irrelevant). We take a factor ~2 bacterial metabolic activity 51 

(respiration, metabolism) increase per 15°C, i.e., an apparent average ‘activation energy’ ΔG‡
BOD = 52 

25±5 kJ/mol [6-8] (lower, i.e., more efficient, than a ‘universal’ 50-60 kJmol-1 [9, 10] (Section S3) 53 

implying specialized oxidation of (mostly) organic carbon in WWTPs under ‘normal’, i.e., equilibrated 54 

(optimized/acclimated) conditions. The narrow margin of ΔG‡
BOD represents a constant BOD type to 55 

which bacteria have uniformly adapted (i.e., no in situ phase changes [11]). BOD consisting of lipids, 56 

carbohydrates, etc. [12]. cBOD is the stoichiometric coefficient, obtained by comparing: 57 

Eq. S7    𝛥𝐻𝑅𝑇𝑝𝐻 − 𝐵 = 𝑐𝐵𝑂𝐷 ⋅ log (𝛥𝐻𝑅𝑇[𝐵𝑂𝐷]) 58 

We take as shape of ∫[𝐻+](𝑡) and ∫[𝐵𝑂𝐷](𝑡), the temporal evolution of pH&BOD in the reactors 59 

(Eq. 6), exponential decay (analogous to CEC degradation in WWTP pseudo-steady state, S2.4). 60 



Acidification in situ also depends on the buffering capacity B of wastewater. We neglect 61 

temperature influences on (bicarbonate) buffering. To accurately parametrize the influences of 62 

Reactions 3-5, B needs to be taken into account. Wastewater characterization lacked info on B (e.g., 63 

alkalinity), we assume the contribution from BOD and TSS to B is constant among reactors. We 64 

assume that CEC concentrations (µg/L) do not influence B. 65 

        66 
Fig. S2 Parametrizing pH and buffering effects in WWTPs. We constructed the relationships analogous to Lijklema et al. [2, 67 
13] (BOD = 0.3COD) and implemented c=1. CO2 production correlates with ammonia oxidation. 68 

 69 
Fig. S3. pH change following wastewater treatment (performance in terms of effluent nitrate and nitrite). Data from [14]. 70 

 71 

EPA states a maximum of 44 kgCO2 per 32 kgBOD [15], c=1.00. Hence, studies applied 1.375 72 

kg CO2/kg BOD [16] (i.e., a 1:1 mol ratio:  c=1.00) [17]. Larger BOD/COD particles are more difficult to 73 

degrade by microorganisms i.e., they have a lower CO2 yield (require more O2). Oxidation of organic 74 

matter may produce 0.986 gCO2/gBOD [18], in mol this implies c =  (0.986/44))/(1/32) = 0.72. Others 75 

found 0.95 kgCO2/kgBOD for carbon respiration (c=0.69) [19]. Eq. S7 gave c=1.05±0.10, Fig. S2. We 76 

thereby applied values of c = 1 for a homogeneous system. With c we calculated free Δ[H+] changes, 77 

i.e., 10pH.  78 

c values (at/close to theoretical maximum of 1.00) imply that within operation conditions 79 

the volatilization amounts (stripping, Fig. S4) of CO2 are negligible as compared to the amounts 80 

produced [20, 21]; Fig. S2 [22]. This underpins the aquaphilic character of CO2, e.g. Henry constant 81 

[23], and water/air partitioning (K) of ~30 (0.015⋅K+1 = (33%+4.5%)/33%, (0.015 = 82 

ocean/atmosphere volume ratio: 3x108miles/2x1010miles) (2.3mmol CO2 /kg seawater, hence, 2.3 83 

mmol CO2/55.55 mol), thus minor release of CO2. In stabilization ponds (Fig S4) pH change is 84 

reversed due to CO2 evaporation: higher ΔBOD, more CO2 to be evaporated, more pH increase. 85 

Volatilizations of both CO2 and CECs can be considered in future assessment. 86 

    87 
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Fig. S4. pH change following BOD changes in wastewater stabilization ponds (HRT = 3.5-20.5 days). Data from Mansouri 88 
[24]. 89 

           90 
Fig. S5. Refinery wastewater concentrations of mercury (y) and COD (x). 91 
 92 
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S2. Bioavailability/Sorption (fast) 95 

 SimpleTreat uses a single (time-independent) value for TSS (to which CECs) sorb. We 96 

implement TSS to calculate free (i.e., bioavailable) concentrations according to [25, 26]: 97 

Eq. S8    [𝐶𝐸𝐶]𝑊=
[𝐶𝐸𝐶]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

K𝑇𝑆𝑆/𝑊∙[TSS]+1
 98 

BOD needs no bioavailability calculation as it is homogeneous. We take that 90% of TSS are removed 99 

during primary treatment [27-29]. We take TSS (kg/L) concentrations from [14] via [𝑇𝑆𝑆] = 1.5 ⋅100 
[𝐶𝑂𝐷] − 45.0

2.8
− 5.4 [30]. We assumed binding exclusively to organic TSS (OM) in standard activated 101 

sludges and raw sewage for all WWTPs (i.e., negligible sorption to e.g., minerals). We assume that, 102 

with respect to biodegradation (Section S3), sorption is effectively instantaneous. Hence, 103 

accountable via equilibrium partitioning and Henderson-Hasselbalch. We calculated KTSS (L/kg) via 104 

KTSS = fOM  KOM/W/ρ (i.e., logKTSS = KOM/W + logfOM – logρ), with density ρ=1.4 kg/L [31]. Since 105 

approximately all TSS contains carbon, we take fOM = 1. As aerobic tanks are well-mixed, we also 106 

assume that sorption will be in effective equilibrium before any significant biodegradation can take 107 

place in WWTPs. We obtained KOM/W (kg OC / L water) from: 108 

Eq. S9    𝐾𝑂𝑀/𝑊(𝑝𝐻) =
𝐾𝑂𝑀/𝑊,𝐶𝐸𝐶𝑛

1+10𝑎(𝑝𝐾𝑎−𝑝𝐻) +
𝐾𝑂𝑀/𝑊,𝐶𝐸𝐶𝑖𝑜𝑛𝑖𝑜𝑛

1+10𝑎(𝑝𝐻−𝑝𝐾𝑎)  109 

Wherein K’s are partitioning, pH is the acidity, a is 1/-1 for (basic/acidic CECs), see Section S1.  110 

We assume that any change in enthalpy after sorption as a function of compound 111 

characteristics is offset by entropy changes (𝛥𝐻𝑂𝑀/𝑊 = 𝑇𝛥𝑆𝑂𝑀/𝑊 + 𝛥𝐺𝑂𝑀/𝑊). See e.g., the strong 112 

correlations between enthalpy and entropy [32, 33]. We thus need not distinguish between 113 

entropy/enthalpy differences, and hence describe temperature effects via a Boltzmann distribution: 114 

Eq. S10    𝑙𝑜𝑔𝐾𝑂𝑀/𝑊 = −
𝛥𝐺𝑂𝑀/𝑊

2.303𝑅𝑇
 115 

With R = 8.314⋅10-3 kJmol-1K-1, and wherein we calculated ΔG (kJ/mol) from: 116 

Eq. S11    𝛥𝐺𝑂𝑀/𝑊 = 𝛥𝐺h + 𝛥𝐺± 117 

We approximated hydrophobic ΔGh binding energy values, via 𝛥𝐺h= 
ℎ𝑂𝑀

ℎ𝑂𝑐𝑡
𝛥𝐺𝑂𝑐𝑡/𝑊, via octanol/water 118 

(Oct/W) partitioning KOct/W values [34] which we assumed were scaled to standard conditions, i.e., 119 

correspond to a standard concentration [35] and T≈15°C (hence, ΔGOM/W=-0.0592⋅logKOM/W). 120 

(hOM/hOct) represents the effectivity of hydrophobic (inverse polar) binding to organic material (i.e., 121 

TSS) over octanol. ΔG± represents ionic binding. 122 

Sorbent-sorbate geometry affects ΔGh and ΔG±. However, WWTP managers/operators do 123 

not (continuously) monitor structures of relevant colloids in sludge. We take a single homogenous 124 

type of OM, and a single binding mode. Empirically, we obtained hOM/hOct = 0.3 (Fig. S6). Carbon 125 

contents of 0.37 and 0.3 [36-38] apply for activated sludge and raw sewage, Fig. S6. Octanol has 126 

~3.5x more fractional hydrophobic surface area (TSA/TPSA ≈ 2 and 7) available for binding then 127 

organic materials/molecules, e.g., humic acid (brown) and octanol (yellow, Fig. S6), substantiating 128 

hOM/hOct = 0.3 [39], similar to 0.23 [40]. We thereby applied (hOM/hOct) = 0.3. For organic cations we 129 

take ΔG± = 5.5 kJ/mol (logK⋅(2,303⋅R⋅T) = 1⋅2.303⋅8.314⋅288/1000=5.5 kJ/mol, Fig. S6), representing 130 

physical adsorption due to (weak) ion exchange (e.g., metals complexed by organic molecules 6 131 

kJ/mol [41-44] to e.g., phenolic and carboxylate groups.  132 

 133 



Regression slope and offset for anionic (red, Fig S6) compounds are identical to those for 134 

neutral (black, Fig S6) compounds (within standard error). For cations, the slope of the regression 135 

between logKoct/w and logKom/w is similar to the slope for neutral and anionic compounds (Fig. S6): 136 

because the compounds have a similar hydrophobic binding mode. At low Koct/W, the regression 137 

slope may be low since CECs do not bind to hydrophobic OM [45]. Empirically, however, the binding 138 

seems to occur to a mostly uniform binding matrix, meaning there is low heterogeneity in 139 

hydrophobicity within OM [46]), Fig. S6. Thereby, we assumed a single OM type. Regression slopes in 140 

[47] are dissimilar (0.47 for cations, 0.11 for anions), which is explained by the fact that Franco and 141 

Trapp used Koct/w for the neutral molecule, whereas we used the Koct/w for molecule as they are 142 

(de)protonated at pH7.4. 143 

144 
    145 
Figure S6. Organic material/water (KOM/W) partitioning (y) estimated from octanol/water partitioning (x). Red=anions, Green=cations, 146 
Black=neutrals (>50%). Experimental KOM/W values taken from [47] which we assume describe a constant density for OM, so that KOM/W 147 
values (L/kg) are directly proportional to values for partitioning (unitless), hence do not affect parametrization. 148 
  149 
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S3 Biodegradation (slow) 150 

We take pH speciation and sorption equilibration as instantaneous relative to 151 

biodegradation. We describe biodegradation of CECs therein according to: 152 

Eq. S12    𝑟𝑒𝑚𝑜𝑣𝑎𝑙 ≡
[𝐶𝐸𝐶]𝑤

1+𝑘⋅𝐻𝑅𝑇
 153 

With k as a first order biodegradation rate constant (hr-1), equivalent to those obtained from 154 

standardized biodegradability tests, e.g., OECD 301, 309 [48, 49] (wherein k⋅HRT=(k/k50)
β). We 155 

calculated biodegradation by assuming that chemical transformations occur via second order 156 

kinetics: 157 

Eq. S13    𝑘 = 𝑘𝐶𝐸𝐶 ⋅ [𝐸𝐶𝐸𝐶] 158 

Wherein [ECEC] (e.g., in mol/L or cells/L) is the effective biomass is (equivalent to 159 

vCEC⋅[CEC]influent/(KTSS/W∙TSS+1), see Section S2;S4), with 𝑘𝐶𝐸𝐶 =  𝐴𝐶𝐸𝐶𝑒−(
𝛥𝐺‡

𝐶𝐸𝐶
𝑅𝑇

)[50]. We take 160 

activation energies ΔG‡
CEC as 'apparent' values, by way of an active average for the range of enzymes 161 

etc. present, and obtained it from: 162 

Eq. S15    𝛥𝐺𝐶𝐸𝐶
‡ = 𝛥𝐺𝐸𝐹𝑆𝐴

‡ ± 𝛥𝐺𝐶𝐸𝐶,𝑟𝑒𝑑𝑜𝑥
‡  163 

In which we took for the reference value ΔG‡
EFSA = 65.4 kJ mol−1. This value is a median ΔG‡ for 164 

neutrally-charged contaminants [50] with a 90% probability within 45.8-93.3 kJmol-1. The value 165 

corresponds to a compound among the <5% most difficult to metabolize under conventional O2 166 

respiration [51]. 167 

According to Boltzmann, a 20 kJ/mol variation corresponds to a ~104 population ratio; this 168 

value represents uptake enhancement (of BOD nutrients over CECs pollutants) [52, 53]. Lipids and 169 

carbohydrates have KOM values of 105±5, on average ~104 times higher than CECs 100.9±4.6 [34, 53](S2). 170 

The 90% probability relates partially to variance in chemical structure: an apparent mean of ΔG‡ for 171 

84 heterogeneous (anionic, cationic, neutral, etc.) compounds (CEC) is 71(±4) kJ mol−1. The variance 172 

(±2SD) corresponds to a factor ~6 (= e-4/RT) effect on kCEC at 15°C. We thereby calculated the 173 

‘perturbation’ 𝛥𝐺𝐶𝐸𝐶,𝑟𝑒𝑑𝑜𝑥
‡  due to variation in chemical structure: 174 

Eq. S16-A   𝛥𝐺𝐶𝐸𝐶,𝑟𝑒𝑑𝑜𝑥
‡ = −𝑅𝑇 ⋅ 𝑙𝑛 (

𝑘𝐶𝐸𝐶,𝑄𝑆𝑃𝑅⋅𝑘𝐸𝐹𝑆𝐴,𝑄𝑆𝑃𝑅

𝐴𝐶𝐸𝐶⋅𝐴𝐸𝐹𝑆𝐴
) 175 

wherein we calculated preexponential ‘frequency’ factors ACEC (e.g., Lmol-h-1) by the method in [54] 176 

(wherein units h-1; dividing by concentration (e.g., mol/L). The corresponding kEFSA,QSPR and AEFSA are 177 

averaged values of CECs evaluated by EFSA [50] obtained by chemoinformatic calculation [54]. We 178 

thereby implement the dependence of kCEC on temperature via the Arrhenius equation wherein we 179 

take kCEC as an apparent value. We calculate the apparent kCEC,QSPR from rate constants for different 180 

protonation (speciation) states: 181 

Eq. S16-B   𝑘𝐶𝐸𝐶,𝑄𝑆𝑃𝑅 =
𝑘𝐶𝐸𝐶𝑛

1+10𝑎(𝑝𝐾𝑎−𝑝𝐻) +
𝑘𝐶𝐸𝐶𝑖𝑜𝑛

1+10𝑎(𝑝𝐻−𝑝𝐾𝑎) 182 

We obtained rate constant values kCEC,n and kCEC,ion (Lmol-1h-1) at T≈15°C and for biodegradation by 183 

chemoinformatic calculation from a quantitative structure-property relationship (QSPR) model from 184 

Nolte et al. [54, 55]. Though bacteria can buffer to their own (internal) optimal (working) pH (range), 185 

pH can shift in the medium [56]). We assumed that the k values as obtained from the QSBR model 186 

represent a (reference) temperature (T1) of 15°C (i.e., are k1), and negligible back-transformation 187 



(reverse) (i.e., k’ for CEC’ → CEC not significant compared to CEC’ → CEC’’). We assume that ACEC 188 

values are independent of temperature: 189 

Eq. S17    𝑘𝐶𝐸𝐶,𝑇2
= 𝑘𝐶𝐸𝐶,𝑇1

𝑒

−(
𝛥𝐺𝐶𝐸𝐶

‡

𝑅
(

1

𝑇2
−

1

𝑇1
))

  190 



S4 Biomass acclimation (slowest) 191 

When running a steady-state model such as SimpleTreat, k values entered need to account 192 

for acclimated biomass, which is often unknown. We do not differentiate between adaption 193 

processes: either via increase of degrader biomass (e.g., Monod growth with lag phases of days), or 194 

evolvement of enzymes (over ‘long’ time scales Δt, e.g., over months) capable of attacking CECs. The 195 

apparent ΔG‡ decrease with increasing equilibrated acclimation [11]. Concentrations of CECs in 196 

WWTPs can vary by orders of magnitude temporally (e.g., higher use and concentration of the 197 

antipsychotic/depressant clopazine in winter than in summer [14, 57]). This can differentially induce 198 

acclimation: ‘biomass cofactors’ [ECEC] which (further) stimulate CEC breakdown. 199 

   200 
Fig. S7. Consumption of CEC, i.e., -Δ[CEC] (z-axis), can over time (x-axis) induce ‘biomass cofactors’ [E] (y-axis). [E]/Δ[CEC] is not a function 201 
of t anymore at large Δt (e.g., months), mathematically Δt -> ∞. We parametrize the relationship between Δ[E]/Δ[CEC] at large t to 202 
describe acclimation. In this illustrative example, vCEC1 > vCEC2 (green vs. red).  203 

We take that biodegradation is effectively instantaneous as compared to acclimation. We 204 

take that acclimation taking place within the ‘small’ HRT (i.e., within dt) is not significant as 205 

compared to acclimation (established) that has occurred (occurring) over months (over Δt), Fig. S7.  206 

Varying CEC concentrations between subsequent (variable) HRTs does not significantly effectuate 207 

enhancement in E because microbial acclimation is a slower process (e.g., multiple SRTs). In other 208 

words, we assume that biomass E metabolizing CECs is in effective steady-state.  209 

Elements (in a wider sense, ‘information’) of the CEC ‘partition’ into biomass via a yield v 210 

leaving an imprint in terms of genetic material. Depending on stoichiometry, this partitioning 211 

increases entropy and lowers free energy [58]. The stoichiometric comparison with BOD captures 212 

cometabolism [57]. In ΔG = ΔH – TΔS, higher T enables acclimation, in turn responsible for, when 213 

bacteria are in a new ‘equilibrium’, more negative ΔG and lower ΔG‡. We assume that T has no effect 214 

on acclimation (Δ[E]/Δ[CEC]) within large Δt (acclimation times), Fig.S7. Experimental values for 215 

acclimation in WWTP(-like) conditions are scarce. Instead, we assess acclimation via yields (ν) by 216 

solving stoichiometric equations (νCEC ∈ c[CEC]+ x[X] → e[ECEC]). We take ECEC to be induced via the 217 

machinery involved in carbohydrate, nucleic and amino acid metabolism (details in [57]). We 218 

thereby calculated [ECEC] according to [57]: 219 

Eq. S18    Δ[𝐸𝐶𝐸𝐶] = Δ(𝑣𝐶𝐸𝐶 ⋅ [𝐶𝐸𝐶]𝑊) 220 

With Δ[CEC]W the CEC concentration that was lost during biodegradation in the secondary aerobic 221 

tank. We performed regression (Figs 5;6) to give k50 and β values which are indicative of biomass and 222 

represent 5x1010 cells/L as a representative average for background concentration of biomass [E]b in 223 

WWTP wastewater [59] degrading CECs [55]. vCEC is a unitless stoichiometric ratio representing 224 

effective yield for biomass cofactors ECEC involved in degrading CECs [57].  225 
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For our modelling, we assume that real-time concentrations [CEC] measured in WWTP 226 
influent are (proportional to/representative of) long-term background concentrations as well: given 227 

that 
𝑑(𝛥[𝐶𝐸𝐶])

𝑑𝑡
=

𝛥[𝐶𝐸𝐶]

𝛥𝑡
+

𝑑[𝐶𝐸𝐶]

𝑑𝑡
 (with d/dt in the order of hours or days: HRT), we assume 228 

𝛥[𝐶𝐸𝐶]

𝛥𝑡
(𝑡 → 𝑖𝑛𝑓) =

𝑑[𝐶𝐸𝐶]

𝑑𝑡
(𝑡 → inf ), so that concentrations measured translate into ECEC. Implicitly, 229 

as a result: 
𝑑[𝐸𝐶𝐸𝐶]

𝑑𝑡
=

𝛥[𝐸𝐶𝐸𝐶]

𝛥𝑡
 and 𝛥𝐸 (

𝛥[𝐶𝐸𝐶]

𝛥𝑡
) ∝ 𝑑𝐸 (

𝑑[𝐶𝐸𝐶]

𝑑𝑡
). We thus assume that induction due to 230 

concentration differences d[CEC] within dt (hours) is negligible as compared to Δt (months): [CEC] 231 
represents in situ concentrations that fed the WWTP in over longer periods of time (e.g., for 232 
months). Future work may distinguish between long-term background and real-time concentrations 233 
to refine analyses.  234 



S5. Benchmarking activation energies 235 

We can benchmark CEC activation energies on BOD activation energies. Taking Arrhenius, 236 

and second order kinetics for CECs: 237 

Eq. S19    𝑘𝐶𝐸𝐶 = 𝐴𝐶𝐸𝐶 ⋅ 𝑒−
Δ𝐺𝐶𝐸𝐶

‡

𝑅𝑇  238 

Eq. S20    𝑘 = [𝐸𝐶𝐸𝐶] ⋅ 𝑘𝐶𝐸𝐶 239 

And for BOD: 240 

Eq. S21    𝑘𝐵𝑂𝐷 = 𝐴𝐵𝑂𝐷 ⋅ 𝑒−
Δ𝐺𝐵𝑂𝐷

‡

𝑅𝑇  241 

Eq. S22    𝑘𝑏𝑖𝑜,𝐵𝑂𝐷 = [𝐸𝐵𝑂𝐷] ⋅ 𝑘𝐵𝑂𝐷 242 

We get by substitution and rearrangement: 243 

Eq. S23    
𝑘

𝑘𝑏𝑖𝑜,𝐵𝑂𝐷
⋅

[𝐸]𝐵𝑂𝐷

[𝐸]𝐶𝐸𝐶
=

𝐴𝐶𝐸𝐶

𝐴𝐵𝑂𝐷
⋅ 𝑒

−Δ𝐺𝐶𝐸𝐶
‡

+Δ𝐺𝐵𝑂𝐷
‡

𝑅𝑇  244 

Which is equivalent to: 245 

Eq. S24    Δ𝐺𝐶𝐸𝐶
‡ = −𝑅𝑇 ⋅ 𝑙𝑛 (

𝑘

𝑘𝑏𝑖𝑜,𝐵𝑂𝐷
⋅

[𝐸]𝐵𝑂𝐷

[𝐸]𝐶𝐸𝐶
⋅

𝐴𝐵𝑂𝐷

𝐴𝐶𝐸𝐶
) +Δ𝐺𝐵𝑂𝐷

‡  246 

Which can be used as a benchmark to acquire activation energies for CECs Δ𝐺𝐶𝐸𝐶
‡ , based on 247 

comparison of experimental pseudo first order rate constants and the relative levels of acclimation 248 
[𝐸]𝐵𝑂𝐷

[𝐸]𝐶𝐸𝐶
 (anything over 1, implying lower acclimation than for BOD), while knowing  Δ𝐺𝐵𝑂𝐷

‡  (e.g., 15-25 249 

kJ/mol). Frequency factors 
𝐴𝐵𝑂𝐷

𝐴𝐶𝐸𝐶
, describing interactions with E, depend on size and geometry [54]. 250 

As lipids, carbohydrates, etc. (i.e., BOD) are similar in size to some CECs, 
𝐴𝐵𝑂𝐷

𝐴𝐶𝐸𝐶
 ≈ 1. Natural substances 251 

(nutrients), have higher uptake (induction of transporters, etc., [E]) [52, 60]. For realistic situations 252 

and experiments we see that 𝑙𝑛 (
𝑘

𝑘𝑏𝑖𝑜,𝐵𝑂𝐷
⋅

[𝐸]𝐵𝑂𝐷

[𝐸]𝐶𝐸𝐶
⋅

𝐴𝐵𝑂𝐷

𝐴𝐶𝐸𝐶
) attains a negative value, so that Δ𝐺𝐶𝐸𝐶

‡  > 253 

Δ𝐺𝐵𝑂𝐷
‡ . E.g., Δ𝐺𝐶𝐸𝐶

‡ , = -2.3⋅ln(1⋅10-8)+20 ≈ 65.4 kJ/mol, equal to the EFSA benchmark we used (S3). 254 

  255 



S6. Supplemental modelling results 256 

257 

258 

  259 

Figure S9. Observed removal (y-axis, in %) versus predicted pseudo first order biodegradation rate constant (h-1, log-transformed). Data 260 
selection. 261 

A: without acclimation (y[CEC]), influent temperature, ΔG‡
CEC. / with ACEC 262 

B: without acclimation (y[CEC]), influent temperature. / with ACEC and ΔG‡
CEC 263 

C: without acclimation (y[CEC]). / with ACEC, ΔG‡
CEC and influent temperature 264 

D: without influent temperature. / with ACEC, ΔG‡
CEC and acclimation 265 

E: without ΔG‡
CEC and ACEC. / with influent temperature and acclimation 266 

F: including all parametrizations. / with ACEC, ΔG‡
CEC, influent temperature and acclimation 267 

 268 

A B 

C D 

E F 



 269 

Figure S9B. Observed removal (y-axis, in %) versus predicted removal (y-axis, in %) based on log-logistic fit. Including all parametrizations. / 270 
with ACEC, ΔG‡

CEC, influent temperature and acclimation.   271 
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 274 

Fig. S10. Observed removal (y-axis, in %) versus predicted pseudo first order biodegradation rate constant (h-1, log-transformed).  All data. 275 

A: without acclimation (y[CEC]), temperature, ΔG‡
CEC.  276 

B: without acclimation (y[CEC]), temperature.  277 

C: without acclimation (y[CEC]).  278 

D: without temperature. 279 

E: without ΔG‡
CEC and ACEC.  280 

F: including all parametrizations. 281 

 282 

 283 

 284 

 285 
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  287 

Fig. S11 Predicted log k (x-values) versus observed WWTP CEC removals (y) without (A: R
2
=0.65) and with (B: R

2
=0.60) 288 

subtracting (T-dependent, pH-dependent) removal due to sorption in primary settling tank from WWTP total removals.  289 

 290 

 291 

Fig. S12 Predicted log k (x-values) versus observed WWTP CEC removals (y) with subtracting percentages of removal via 292 
sorption in primary settling tank of the WWTP. Sorption percentages calculated without temperature-dependence (A: 293 
R

2
=0.62) and pH-dependence (B: R

2
=0.61).  294 

  295 
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S7. Back-transformation 296 

To dose the effective concentration of (i.e., deactivate) drugs, the human body (liver) 297 

produces hydrophilic (e.g., glucuronide and sulfate) conjugates that more rapidly exit the body [61]. 298 

Whereas >99% of gut bacteria are anaerobes [62], conditions shift in the WWTP as these promote 299 

selection and promotion of oxygeneous bacteria and pathways that may utilize e.g. glucuronidates 300 

[63]. As a result, we investigated potential back-transformation reactions therein [64], by calculating 301 

removals in WWTP aeration (secondary) tanks via: 302 

𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
[𝐶𝐸𝐶]𝑖𝑛𝑓,𝑎 − (1 − 𝑓)[𝐶𝐸𝐶]𝑒𝑓𝑓,𝑎

[𝐶𝐸𝐶]𝑖𝑛𝑓,𝑎
 

Here, 𝑓 ⋅ [𝐶𝐸𝐶]𝑒𝑓𝑓 are concentrations of parent (p) CECs produced (back-transformed) in the 303 

WWTP’s aeration (a) tanks. With 𝑓𝑝→𝑚,ℎ𝑢𝑚𝑎𝑛 as the fraction of parent CEC transformed into 304 

metabolite (m) in human and 𝑓𝑚→𝑝,𝑤𝑤𝑡𝑝 the fraction of metabolite back-transformed into parent in 305 

the WWTP. With: 306 

𝑓 = 𝑓𝑝→𝑚,ℎ𝑢𝑚𝑎𝑛 ⋅ 𝑓𝑚→𝑝,𝑤𝑤𝑡𝑝 =  
1

1 + (
[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛

[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛,𝜇
)

−𝛽ℎ𝑢𝑚𝑎𝑛
⋅

1

1 + (
[𝐶𝐸𝐶𝑚]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

[𝐶𝐸𝐶𝑚]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡,𝜇
)

−𝛽𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡
 

with a fitted scaling factor β = 3 (cumulative log-normal fits in previous sections), as WWTP bacteria 307 

are primarily of human origin [65] (bacteria make up <60% of fecal dry mass [66]) we take βhuman = 308 

βinfluent. [CEC]human,μ is a generic population-average therapeutically effective half-saturation constant 309 

in plasma which, considering the common origin of (gut) bacteria, we take as [CEC]human,μ = 310 

[CEC]influent,μ = 0.1 nM, representing marginal selectivity [67]. Due to a lack of experimental data, we 311 

simplified, taking the value for all CECs, while obviously differences exist [68]. 312 

[CEC]human is a population-wide average (therapeutically) relevant concentration of the CEC 313 

in human plasma: the more people use it (at a prescribed constant dosing), the higher the 314 

[𝐶𝐸𝐶]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡, by which we assume CEChuman_μ and CEChuman are optimized towards each other in 315 

each individual human (the more drug in plasma, induces higher μ) [68], Fig. 12-2B. We assume a 316 

maximum of 50% biotransformations: 317 

 318 

[𝐶𝐸𝐶𝑚]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 =
[𝐶𝐸𝐶]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

1 + (
[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛

[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛,𝜇
)

−𝛽ℎ𝑢𝑚𝑎𝑛
 

[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛 =
𝑑 ∙ [𝐶𝐸𝐶]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

1 + (
𝑑 ∙ [𝐶𝐸𝐶]𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

[𝐶𝐸𝐶]ℎ𝑢𝑚𝑎𝑛,𝜇
)

−𝛽ℎ𝑢𝑚𝑎𝑛
 

𝑑 is a dilution factor (default = 1). Ranges calculated for fp->m,human, affected by dosing [68], match 319 

those for experiments [69, 70]. The full constructed graph of Figure 11 (in the main document) is 320 

given below.321 



322 
Fig. 12-2A. We assume a constant μ across WWTPs. The ratio between cechuman/cechuman,mu and cecinfluent/cecinluent,mu is 323 
constant. 324 

 325 

 326 

Fig. 12-2B. Relationship between clearance rate constant (hr
-1

, log) and the effective bioavailable therapeutic 327 
concentration. Data from Schulz et al. [71]. The relationship is logk = 0.09 ⋅ log concentration – 0.57, with R

2
 = 0.07. Half-life 328 

refers to cleansing through liver functioning and excretion through the kidneys and intestines. Dashed lines denote 329 
measurement variability in log k, 0.43. Additional intraspecies uncertainty factors of one or half an order of magnitude 330 
commonly apply [72, 73] .  331 
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 337 

Fig. S13. CEC removal (fraction, y-axis) versus concentration (nM, x-axis). f=0 (S13-1), and calculated f (>0, S13-2). We deleted all Belgian CEC concentration values 338 
reported as lower than the detection limit, and those outlying the CEC log-average among all Belgian WWTPs by more than 2σ (>95%). 0.1 nM from [67] appears as a 339 
‘concentration limit’. 340 
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B1 B2 

C1 
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Outliers in Figure S13 include (super)hydrophobic (e.g., halogenated flame-retardants; 341 

logKOW>4). These hardly enter aeration tanks (low concentrations, Fig. S13) because of removal via 342 

sedimentation/sorption beforehand. Outliers then attribute to variable sorption rendering 343 

concentrations in aeration uncertain (see also KOC of clarithromycin and roxithromycin [74]). The 344 

longer and more chemicals reside in the environment, the more they will (have) induce(d) 345 

corresponding metabolic machinery with lower IC50 values: compare e.g., ‘first generation’ (~1950-346 

1960s) herbicides to ‘next generation’ pharmaceuticals. Fluctuations in (day-to-day) concentrations 347 

of CECs, e.g., around holidays [75, 76], may give rise to concentrations that do not correspond 348 

(represent) the in-situ acclimation state. 349 

  350 
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