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ABSTRACT 

Urinary tract infection (UTI) is one of the most common infectious diseases, with a global annual 
incidence of ~175 million cases. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI 
(>80%) and increasingly associated with rising antibiotic resistance. UPEC form biofilms during 
infection of the urinary tract, either on the luminal surface of the bladder, intracellularly within 
bladder superficial epithelial cells, or on the surface of indwelling catheters. This lifestyle of sessile 
growth promotes enhanced resistance, persistence and increased rates of recurrent UTI. UPEC 
employ a range of virulence factors to form biofilms, including fimbrial adhesins for attachment and 
autotransporters to promote cell-to-cell aggregation. In addition, UPEC biofilms are encased in an 
extracellular matrix comprised of proteins such as curli amyloid fibres and polysaccharides such as 
cellulose, which together form a hydrating glue that provides structural support for the biofilm and 
protects its component cells. Here, we describe the key features of UPEC biofilms and their 
importance for UPEC pathogenesis of the urinary tract.  

Keywords: fimbrial adhesins, UPEC biofilms, UPEC pathogenesis, urinary tract infections, 
uropathogenic Escherichia coli. 

Urinary tract infections 

Urinary tract infection (UTI) involves infection of the bladder (cystitis) and kidney 
(pyelonephritis) and can lead to life-threatening sepsis. Approximately 25% of women 
who suffer UTI will experience a recurrence within 6 months of the initial infection,1 

either with the same strain or a new organism.2 Overall, recurrent UTI is associated with 
increasing antibiotic resistance, treatment failure, decreased quality of life and mounting 
pressure on our healthcare system. Catheter-associated UTIs (CAUTIs) are also a major 
problem, particularly in the hospital setting. In Australia, it is estimated that the eco-
nomic burden of antibiotic-resistant UTIs could mount to A$1.6 billion per annum by 
2030 if nothing is done to halt increasing rates of infection.3 

Uropathogenic Escherichia coli 

UTI is caused by a diverse range of pathogens, the most common being uropathogenic 
Escherichia coli (UPEC), which is responsible for >80% of all infections.4 UPEC possess 
multiple virulence factors that enable infection of the urinary tract and promote disease 
pathogenesis. These include: (i) adhesive organelles that mediate attachment to uroepithe-
lial cells in the bladder (e.g. type 1 fimbriae) and the kidney (e.g. P fimbriae) and facilitate 
colonisation5,6; (ii) autotransporter proteins (e.g. Ag43) that mediate aggregation7,8; (iii) 
iron acquisition systems involving siderophores and heme-binding proteins that scavenge 
iron from the host to enable survival in the iron-poor urinary tract9; (iv) toxins such as 
cytotoxic necrotising factor-1 and hemolysin that damage host cells, thereby enabling 
penetration into deeper tissue layers10; (v) surface polysaccharides such as the capsule 
and O-antigen that provide protection against soluble and cellular mediators of host innate 
immunity11; and (vi) flagella that promote motility, enabling ascension from the bladder 
into the kidneys.12 UPEC also exhibit high rates of antibiotic resistance, including resistance 
to last line carbapenems and polymyxins, and frequently carry conjugative plasmids that 
facilitate the rapid dissemination of antibiotic resistance genes.13 

UPEC biofilm formation 

UPEC can exist in extracellular and intracellular niches in the urinary tract, both of which 
are associated with the formation of biofilms. UPEC form biofilms on the luminal surface 
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of the bladder and on the surface of catheters. In addition, 
UPEC can form biofilm-associated intracellular bacterial 
communities (IBCs) within superficial bladder epithelial 
cells, where they establish tightly packed aggregates com-
prising 104–105 cells enclosed in an extracellular matrix.14 

The pathway of IBC formation has been described exten-
sively in mice,14 and evidence for IBC formation in human 
patients has also been reported.15 The formation of biofilms 
by UPEC during infection enables the establishment of a 
physical barrier that protects against host innate immune 
defences (e.g. neutrophils and antimicrobial peptides such 
as cathelicidins) and antibiotics.16 In laboratory mice, UPEC 
intracellular growth within bladder epithelial cells results in 
the persistence of infection despite treatment with antibio-
tics with different target specificities and from different 
classes.17 The close proximity of bacterial cells within bio-
films also contributes to the exchange of DNA, including 
antimicrobial resistance plasmids. Overall, the impact of 
biofilm formation by UPEC is associated with increased 
resistance, persistence and recurrent infections. 

Mechanisms of UPEC biofilm formation 

UPEC biofilm formation involves several stages of progres-
sion: (i) adhesion, (ii) aggregation and early development of 
the biofilm structure, (iii) biofilm expansion and maturation, 
and (iv) dispersal of cells from the biofilm (Fig. 1). Initial 

attachment requires the expression of fimbriae such as type 1 
fimbriae that mediate specific binding to mannosylated blad-
der superficial epithelial cells by a tip-located FimH adhesin, 
and subsequent invasion and the formation of IBCs.14 UPEC 
also produce other fimbriae that contribute to adhesion by 
interaction with different receptors, including P, F1C, F9, 
Afa, and type 3 fimbriae.18–20 After attachment, UPEC pro-
liferation leads to the formation of aggregates or clusters by 
cell-to-cell interactions. One important UPEC surface factor 
that drives aggregation and biofilm development is the auto-
transporter protein Ag43,8 but other autotransporters also 
promote similar phenotypes.21,22 A key process that occurs 
during UPEC biofilm maturation is the production of an 
extracellular matrix, a glue composed of protein and poly-
saccharide that functions as an external support to maintain 
the structural integrity of the biofilm. The primary building 
blocks of the UPEC biofilm extracellular matrix are curli and 
cellulose. Curli are extracellular amyloid fibres that form 
connections between cells and facilitate interactions with 
UPEC-produced cellulose.23 Other polysaccharides such as 
β-1,6-N-acetyl-D-glucosamine (PGA) and colanic acid also 
function as extracellular matrix components that shape the 
architecture of the developing biofilm. The last stage of UPEC 
biofilm maturation involves detachment, leading to dispersal 
of cells from the biofilm and the capacity to seed new biofilms 
at distal sites. 

A molecular mechanism that triggers the transition 
of UPEC from a sessile (attached) state to a planktonic 
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Fig. 1. Schematic diagram of biofilm formation and dispersal. Biofilm developmental process involving: (i) 
surface attachment of uropathogenic Escherichia coli (UPEC), (ii) cell aggregation and early development, (iii) 
expansion and maturation, and (iv) dispersal that can result in the formation of new biofilms at distal sites. 
Diguanylate cyclases (DGC) synthesise c-di-GMP from two GTP molecules, increasing levels of c-di-GMP 
that promotes biofilm formation. In the reverse step, c-di-GMP is degraded into two GMP molecules by 
phosphodiesterases (PDE), reducing c-di-GMP levels and promoting motility and dispersal from biofilms. 
Image was created with Biorender.    
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(free-swimming) state is the production of the second 
messenger molecule bis-(3′-5′)-cyclic dimeric guanosine 
monophosphate (c-di-GMP).24 High UPEC intracellular 
concentrations of c-di-GMP, generated by diguanylate 
cyclase enzymes that synthesise c-di-GMP, promote the pro-
duction of adherence, aggregation and extracellular matrix 
components that drive biofilm formation. By contrast, 
low intracellular concentrations of c-di-GMP, achieved 
by the activation of phosphodiesterase enzymes that degrade 
c-di-GMP, promote the production of flagella and UPEC 
dispersal from the biofilm. 

UPEC biofilm extracellular matrix 
components – curli 

Curli are extracellular amyloid fibres that contribute to UPEC 
biofilm formation by interacting with host cell matrix pro-
teins and enhancing adherence, aggregation and colonisation 
of the urinary tract.25 The genes involved in curli production 
(referred to as curli-specific genes, csg) are found at the same 
location on the chromosome and arranged as two divergent 
operons; csgBAC and csgDEFG. The csgBAC operon encodes 
the major subunit protein CsgA, the minor subunit and 
nucleator protein CsgB, and the CsgC periplasmic chaperone. 
The csgDEFG operon encodes the positive regulator CsgD 
(which regulates both operons), the auxiliary secretion fac-
tors CsgE and CsgF, and the CsgG pore that facilitates secre-
tion of curli subunit proteins across the outer membrane.25 

Curli biosynthesis is regulated by a complex network 
involving environmental and stress-sensing mechanisms 
that are relayed through the curli regulator CsgD. These 
involve the stationary phase sigma factor RpoS, the two- 
component regulatory systems OmpR-EnvZ and CpxA-R, the 
Rcs signal transduction system, integration host factor (IHF), 
the histone-like nucleoid-associated protein H-NS, small non- 
coding RNAs and c-di-GMP. Most of our knowledge on curli 
regulation and biosynthesis comes from studies on commen-
sal E. coli K-12 strains. We recently devised a high-resolution 
genetic screen employing saturated transposon mutagenesis 
coupled with phenotypic detection using the curli-specific 
dye Congo Red to define the genes involved in curli bio-
genesis.23 Transposon mutants with impaired curli produc-
tion, identified by their inability to bind Congo Red, were 
characterised en masse using transposon-directed insertion 
site sequencing (TraDIS). In addition to the known genes 
mentioned above, our method identified novel genes and 
pathways involved in curli production, including purine 
biosynthesis, lipopolysaccharide (LPS) biogenesis, stress and 
stationary phase regulation, metabolism, sodium transport 
and septum formation. Excitingly, we also discovered a new 
curli repressor that we named rcpA (i.e. repressor of curli 
production A). Overexpression of rcpA reduced the transcrip-
tion of genes encoding the curli regulator CsgD and the curli 
major subunit CsgA. The rcpA gene encodes a protein of 93 
amino acids with two predicted transmembrane helices, a 
cytoplasmic C-terminal domain, and a high hydrophobic 
amino acid ratio, all of which suggest that RcpA may localise 
to the inner membrane and function by sensing and respond-
ing to environmental signals. Ongoing work in our lab is 

aimed at understanding the function of RcpA and elucidating 
the molecular mechanisms by which other factors identified 
in our screen affect curli production. 

UPEC biofilm extracellular matrix 
components – cellulose 

Cellulose is a linear exopolysaccharide polymer comprising 
β-1,4-linked glucosyl residues. The genes responsible for 
UPEC cellulose synthesis are encoded on two divergent oper-
ons; bcsRQABZC encoding proteins involved in synthesis and 
secretion and bcsEFG encoding the machinery required for 
cellulose modification. Similar to curli, cellulose biosynthesis 
is controlled by a complex regulatory network, mostly 
through CsgD. Therefore, cellulose is often co-produced 
with curli, explaining why both of these molecules make 
up the primary components of the biofilm extracellular 
matrix. The second messenger molecule c-di-GMP is also a 
critical checkpoint for cellulose production, as it functions as 
a direct activator of the BcsA synthase that transfers glucosyl 
residues from UDP-glucose onto the growing β-D-1,4-glucan 
chain in cellulose biogenesis. In UPEC, cellulose is modified 
by the addition of phosphoethanolamine, mediated by the 
BcsG transferase enzyme,26 although the functional effect of 
this modification remains to be properly understood. Current 
work in our lab is directed at defining the complete set of 
genes involved in UPEC cellulose production, and under-
standing the intersection of pathways involved in cellulose 
and curli synthesis and degradation. 

Conclusion 

The capacity to form biofilms plays an integral part in UPEC 
disease pathogenesis. We now have a good understanding of 
the virulence components that promote UPEC biofilm for-
mation, including mechanisms of attachment, cell aggrega-
tion and extracellular matrix production. Future work will 
involve investigating the complex genetic networks that 
control these processes, with the goal to develop new ther-
apeutics to inhibit and disrupt UPEC biofilms. 
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