10.1071/AN23352

Animal Production Science

Supplementary Material

Environmental impacts of Australian pork in 2020 and 2022 determined using lifecycle assessments

M. A. Copley^{A,*}, E. J. McGahan^A, K. McCormack^B, and S. G. Wiedemann^A

^AIntegrity Ag, 10 Neil Street, Toowoomba City, Qld 4350, Australia.

^BPresent address: Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia.

^{*}Correspondence to: M. A. Copley Integrity Ag, 10 Neil Street, Toowoomba City, Qld 4350, Australia Email: maryfrances.copley@integrityag.net.au

Benchmarking by MMS

Environmental impacts per kilogram of liveweight were determined by production system. Key production data are outlined in Table S1. The benchmarking data for MMS breakdown, energy, water, and herd production were derived from inventory data collected for 43 piggeries in FY22. The analysis used the weighted average national herd diet composition and sourcing data. The national herd breakdown by state was applied to the electricity and water grids. In effect, the benchmarking piggeries are representative of equivalent Australian production, e.g., 100% CAP production in Australia, as opposed to 100% CAP production weighted to where 100% CAP production occurs. The data in Table S1 underpin the results reported in Table S9 and together represent average production metrics and environmental impacts for standard housing and MMS in Australia.

	Units	100% CAP	Partial CAP	100% C, no CAP	DL/C	DL/O	0
Conventional, CAP	% of production	100%	46%	0%	0%	0%	0%
Conventional, no CAP	% of production	0%	38%	100%	55%	0%	0%
Deep Litter	% of production	0%	16%	0%	45%	60%	0%
Outdoor	% of production	0%	0%	0%	0%	40%	100%
Progeny FCR	kg feed/kg LW	2.4	2.4	2.4	2.3	2.3	2.2
Herd Feed Conversion	kg feed/kg DW	3.6	3.8	3.8	3.6	3.8	4.0
Progeny sold/sow.yr	No.	22.1	20.7	21.2	20.5	17.0	19.0
DW progeny sold/sow.yr		1890.1	1656.5	1672.6	1639.4	1314.8	1332.5
Total energy on-farm (used, generated & sold)	MJ/t LW	-56.9	660.3	955.1	981.6	780.9	467.1
On-farm energy (incl. incl. renewables)	MJ/t LW	1337.1	1210.3	955.1	981.6	780.9	467.1
On-farm energy (excl. incl. renewables)	MJ/t LW	775.9	942.2	955.1	981.6	780.9	467.1
Water consumption	L/t LW	35,084	24,939	22,472	19,370	8,831	15,045
Effluent irrigation	% of total	37%	48%	37%	35%	0%	0%

Table S1. Summai	y data for	benchmarking	g bj	y MMS	analysis.
------------------	------------	--------------	------	-------	-----------

Table S2. Average feedmilling inputs for FY20 and FY22, reported per 1000kg of feed milled

	FY20 Average inputs	FY20 Range	FY22 Average inputs	FY22 Range
Grid electricity (kWh)	20.8	0.2 - 41.0	20.3	0.8 - 41.0
Electricity from solar (kWh)	0.2	0.0 - 0.9	0.2	0.0 - 0.5
LPG (MJ)	17.9	0.0 - 255.0	15.9	0.0 - 255.0
Natural gas (MJ)	88.6	0.6 - 67.0	83.0	0.6 - 67.0
Diesel (L)	2.5	0.0 - 7.6	2.3	0.0 - 7.2
Petrol (L)	0.1	0.0 - 0.2	0.0	0.0 - 0.1
Freshwater (L)	44.3	23.1 - 88.7	46.3	22.9 - 88.7

Ranges between inputs in Table S2 vary according to the major energy source used in milling, e.g., grid

electricity or diesel.

fer rogears	and excluding	land use enn	ssions nom
	Units	2020*	2021*
NSW	Mt CO ₂ -e	1.74	2.00
QLD	Mt CO ₂ -e	1.33	1.21
VIC	Mt CO ₂ -e	-0.28	-0.39
WA	Mt CO ₂ -e	-0.33	-0.43
SA	Mt CO ₂ -e	-1.05	-1.09
TAS	Mt CO ₂ -e	0.10	0.10
NT	Mt CO ₂ -e	0.02	0.02
Australia	Mt CO ₂ -e	1.52	1.43

Table S3. Net LU and dLUC emissions (reported in Mt CO₂-e by state and for Australia) from cropland, averaged o<u>ver 10 years and excluding land use emissions from p</u>erennial woody crops

*Data from Australia's National Greenhouse Accounts (2023)

Primary and further processing

	FY2	0 and F Y 22		
	FY20 Average Inputs	FY20 Range	FY22 Average Inputs	FY22 Range
Grid electricity (kWh)	148.8	82.6 - 277.2	147.4	81.2 - 278.0
LPG (MJ)	15.8	0.0 - 87.1	16.4	00.0 - 87.1
Natural gas (MJ)	228.3	0.0 - 730.8	347.4	0.0 - 871.6
Diesel (L)	0.5	0.0 - 2.6	0.5	0.0 - 2.6
Fuel oil (L)	0.8	0.0 - 4.2	0.0	0.0 - 2.1
Coal (t)	0.01	0.0 - 0.04	0.01	0.0 - 0.03
Petrol (L)	0.1	0.0 - 0.1	0.1	0.0 - 0.3
Refrigerant (kg)	0.2	0.1 - 0.5	0.2	0.1 - 0.5
Freshwater (L)	6,340	1,525 – 12,664	6,574	1,530 – 9,854

 Table S4. Average inputs for primary processing of Australian pork, reported per tonne of HSCW, for

 FY20 and FY22

Table S5. Average inputs for further processing of Australian pork, reported per tonne of CCW, for FY20 and FY22

	FY20 Average Inputs	FY20 Range	FY22 Average Inputs	FY22 Range
Grid electricity (kWh)	252.6	131.7 – 522.4	233.9	131 - 6341
LPG (MJ)	6.7	0.0 - 19.7	6.7	0.0 - 19.7
Natural gas (GJ)	405.8	255.3 - 683.5	280.0	255.3 - 1950.0
Refrigerant (kg)	0.1	0.05 - 0.1	0.1	0.05 - 0.1
Freshwater (L)	1,372	480 - 2,154	1,372	480 - 2,154

Table S6. Summary data used to model environmental impacts per kilogram of pork at the retail shelf
for FY20 and FY22

	Units	FY20	FY22
Transport to warehousing	km	366.9	366.9
Transport to retail	km	188.5	189.0
Fossil energy consumption	MJ/kg pork	2.74	2.79
Waste	kg/kg pork	0.14	0.15
Water consumption*	L/kg pork	0.6	0.6
Emission intensity#	kg CO ₂ -e/kg pork	0.75	0.75

*Water consumed at warehousing and retail sites.

[#]Scope 1, 2 and 3 emissions from operation of warehousing and retail facilities (excludes emissions from waste treatment and product transport).

Sensitivity analysis methodology

Producers were surveyed regarding major source regions for Australian feed grains and proteins. Where possible, regionally specific background processes from AusLCI (ALCAS 2017) were used and irrigation water application rates were determined from published data. The sensitivity of the national herd and individual farms' freshwater consumption impacts to these regionally specific irrigation rates was tested.

The sensitivity of the model was tested for assumptions regarding feed waste (% of total feed fed). Producers were surveyed and asked to provide an estimate of feed waste. However, given that feed waste cannot be measured, there was a degree of uncertainty associated with these estimates. For verification, industry experts were consulted regarding average feed waste for different housing or feeding systems (Sara Willis & Alan Skerman, pers. comms). Industry estimates were then compared with estimates from PigBal (Skerman *et al.* 2015), which calculates predicted feed waste. For a 100% conventional piggery, the sensitivity of a reported feed waste of 4% was compared with a predicted feed waste of 10%.

The sensitivity of the emission intensity (and eutrophication potential) of outdoor pig production to dietary crude protein (CP) was also tested. The national average grower diet for FY22 was 17.8% crude protein. Analysis of a 16.5% crude protein grower diet (see Pomar et al. (2021)) was conducted to compare nitrous oxide emissions from manure and N eutrophication potential.

Table S7. Environmental impacts for the National Herd for FY20 and FY22, reported per kilogram of liveweight

	nvev	veignt			
	Units	National Herd FY20	2.SD (±)	National Herd FY22	2.SD (±)
GHG emissions	kg CO ₂ -e	3.0	0.1	3.0	0.1
GHG emissions - LU & dLUC	kg CO ₂ -e	0.4	0.07	0.3	0.03
Total GHG emissions	kg CO ₂ -e	3.4	0.2	3.3	0.2
Fossil energy use	MJ	12.9	0.5	13.4	0.5
Renewable energy generated and consumed	MJ	0.1	0.0	0.1	0.0
Freshwater consumption	L	93.8	24.9	52.5	15.7
Water stress	L H ₂ O-e	68.4	18.1	43.2	12.9
Land occupation	m^2	12.0	3.2	12.7	3.8
Total freshwater eutrophication potential	kg P	2.1e-04	2.5e-05	2.3e-04	3.6e-05
Total marine eutrophication potential	kg N	7.6e-03	2.8e-04	9.9e-03	4.3e-04

Water scarcity ranged from 14.3 \pm 3.2 to 13.6 \pm 3.5 in FY20 and FY22, respectively.

Table S8. GHG emissions for the National Herd for FY20 and FY22, reported per kilogram of
liveweight, as Scope 1, 2 and 3 emissions

	Units	National Herd FY20	National Herd FY22
Scope 1 - Enteric methane	kg CO ₂ -e	0.2	0.2
Scope 1 - Emissions from MMS	kg CO ₂ -e	1.4	1.5
Scope 1 - Emissions from energy	kg CO ₂ -e	0.1	0.1
Scope 2 - Grid electricity	kg CO ₂ -e	0.1	0.1
Scope 3 - Emissions from energy & grid electricity	kg CO ₂ -e	0.0	0.0
Scope 3 - Feed and transport	kg CO ₂ -e	1.1	1.2
Subtotal	kg CO ₂ -e	3.0	3.0
Scope 3 - LU & dLUC	kg CO ₂ -e	0.4	0.3
Total	kg CO ₂ -e	3.4	3.3

Table S9. Environmental impacts per kilogram of liveweight produced in standard housing and
manung management guatema in EV22

	Units 100% Partial 100% C/D					C/DL O/DL	0
		САР	САР	C, No CAP			
GHG emissions	kg CO ₂ -e	1.8	2.7	4.4	3.4	2.0	2.1
GHG emissions - LU & dLUC	kg CO ₂ -e	0.3	0.3	0.3	0.3	0.3	0.3
Total GHG emissions	kg CO ₂ -e	2.1	3.0	4.7	3.7	2.3	2.4
Fossil energy use	MJ	11.7	12.6	13.1	15.1	12.7	12.6
Renewable energy generated and consumed	MJ	0.56	0.28	0.04	0.02	0.01	0.01
Renewable energy generated and sold	MJ	0.27	0.01	0.00	0.00	0.00	0.00
Freshwater consumption	L	63.6	52.9	51.3	49.5	38.4	47.6
Water stress	L H ₂ O-e	49.7	43.1	41.7	40.5	33.6	40.5
Land occupation	m^2	12.4	12.7	12.5	12.4	12.8	14.4
Total freshwater eutrophication potential	kg P	1.6e-04	1.7e-04	1.7e-04	1.7e-04	5.2e-04	1.2e-03
Total marine eutrophication potential	kg N	1.1e-02	1.0e-02	1.1e-02	9.4e-03	9.5e-03	1.1e-02

 Table S10. Total emissions (incl. LU and dLUC) for the Australian pork industry in FY20 and FY22, reported by gas

Units	FY20	FY22
tCO a		
1002-6	546,676	604,030
t CO ₂ -e	221,076	243,500
t CO ₂ -e	796,167	903,672
t CO ₂ -e	3,145	3,431
t CO ₂ -e	229,804	161,029
t CO ₂ -e	1,796,869	1,915,661
	$t CO_2$ -e t CO_2-e t CO_2-e	t CO ₂ -e 221,076 t CO ₂ -e 796,167 t CO ₂ -e 3,145 t CO ₂ -e 229,804

 Table S11. Greenhouse gas emissions for the Australian pork industry in FY20 and FY22, reported as totals and net (of traded ACCUs), including LU and dLUC emissions

	Units	FY20	FY22
GHG emissions, excl. LU & dLUC	t CO ₂ -е	1,567,064	1,754,632
GHG emissions – LU & dLUC [#]	t CO ₂ -e	174,852	161,029
Total GHG emissions	<i>t CO</i> ₂ - <i>e</i>	1,796,869	1,915,661
ACCUs generated & sold to private market	No.	8,560	73,716
Net GHG emissions	t CO ₂ -e	1,805,429	1,989,377

Table S12. Total emissions (incl. LU and dLUC) for the Australian pork industry, reported as Scope 1,

2 and 3 emissions, and sectoral emissions (Scope 1 & 2) for FY20 and FY22	
National Herd	National

	Units	National Herd FY20	National Herd FY22
Scope 1 - Enteric methane	tonnes CO ₂ -e	96,199	103,453
Scope 1 - Emissions from MMS	tonnes CO ₂ -e	767,603	848,959
Scope 1 - Emissions from energy	tonnes CO ₂ -e	29,684	33,574
Scope 2 - Grid electricity	tonnes CO ₂ -e	76,735	77,509
Scope 3 - Emissions from energy & grid electricity	tonnes CO ₂ -e	17,422	17,024
Scope 3 - Feed and transport	tonnes CO ₂ -e	579,422	674,113
Subtotal	tonnes CO ₂ -e	1,567,064	1,754,632
Scope 3 - LU & dLUC	tonnes CO ₂ -e	229,804	161,029
Total	tonnes CO ₂ -e	1,796,869	1,915,661
Total sectoral emissions (Scope 1 & 2)	tonnes CO ₂ -e	1,016,858	1,016,858
ACCUs generated & sold to the private market	No.	8,560	73,716
Net sectoral emissions (Scope 1 & 2)	tonnes CO ₂ -e	978,781	1,137,211

Table S13. Environmental impacts per kilogram of pork ready for distribution to retail for Australiafor FY20 and FY22

	Units	Australia FY20	2.SD (±)	Australia FY22	2.SD (±)
GHG emissions	kg CO ₂ -e	5.3	0.2	5.4	0.2
GHG emissions - LU & dLUC	kg CO ₂ -e	0.7	0.1	0.4	0.1
Total GHG emissions*	kg CO ₂ -e	5.9	0.4	5.8	0.3
Fossil energy use	MJ	26.1	0.8	26.5	0.9
Renewable energy generated & consumed	MJ	0.2	0.0	0.2	0.0
Freshwater consumption	L	160.4	42.5	74.9	27.7
Water stress	LH ₂ O-e	116.7	30.9	22.7	6.8
Land occupation	m ²	18.8	5.0	20.2	6.0
Total freshwater eutrophication potential	kg P	3.5e-04	1.3e-04	3.9e-04	4.4e-05
Total marine eutrophication potential	kg N	1.2e-02	4.4e-04	1.6e-02	6.5e-04

Sensitivity analysis results

Assumptions regarding water related impacts were found to be highly sensitive to source region for grain. The presence of irrigated grain within a region had a dramatic effect on piggery freshwater consumption. Because few piggeries were able to confirm exact amounts of grain sourced from farms that utilised irrigation, regional averages were used that reflected water use and grain production reported in regional statistics. Only a very small fraction of grain supply arose from irrigated sources (for example, 9.7% in NSW) and market data were unclear regarding whether feed grain was irrigated at the same rate as other grain types (for example, grain for human consumption or export). Consequently, the attributed water was uncertain. To examine the impact, we revised the assumption to reduce the grain sourced from irrigation down by 50%, which resulted in a 30% decrease in freshwater consumption at the national level for 2020. For individual farms in the southern grain region this was even more sensitive: reducing the source of grain from irrigation from the regional average to "zero" (assuming a farm could conceivably source all grain from dryland farms only), resulted in an 58% reduction in freshwater consumption use for highly irrigation exposed farms.

In 100% C production, GHG emissions were shown to be sensitive to assumptions regarding the fraction of feed waste. A reported feed waste fraction (farm estimate) of 4% was compared with a PigBal (Skerman *et al.* 2015) estimate of 10%. GHG emissions per kilogram of liveweight were 18% higher in the latter case (see Table S14), compared with the 4% feed waste analysis, and 14% higher than the average for 100% conventional production (see **Table S9**). Given this degree of sensitivity, ongoing work is needed to monitor and minimise feed waste in C systems. Other housing/MMS were much less sensitive to feed waste.

The model was found to exhibit some sensitivity to dietary CP in O production (see Table S15). A 16.5% CP grower diet (compared with 17.8% in **Table S9**) resulted in 2.5% lower GHG emissions (excl. LU & dLUC) per kilogram of LW.

Table S14. Environmental impacts per kilogram of liveweight for a 100% conventional piggery with 4% and 10% feed waste

	Units	4% feed waste	10% feed waste
GHG emissions	kg CO ₂ -e kg LW ⁻¹	4.3	5.1
GHG emissions - LU & dLUC	kg CO ₂ -e kg LW ⁻¹	0.3	0.3
Total GHG emissions	kg CO ₂ -e kg LW ⁻¹	4.6	5.4
Fossil energy use	MJ kg LW ⁻¹	13.1	13.1
Renewable energy generated and consumed	MJ kg LW ⁻¹	0.0	0.0
Freshwater consumption	L kg LW ⁻¹	51.3	51.3
Water stress	L H ₂ O-e kg LW ⁻¹	41.7	41.7
Land occupation	m ² kg LW ⁻¹	12.5	12.5
Total freshwater eutrophication potential	kg P kg LW ⁻¹	1.7e-04	1.7e-04
Total marine eutrophication potential	kg N kg LW ⁻¹	1.1e-02	1.1e-02

 Table S15. Environmental impacts per kilogram of liveweight for outdoor production with a low crude protein grower diet.

▲	Units	Outdoor (low CP grower diet)		
GHG emissions	kg CO ₂ -e kg LW ⁻¹	2.1		
GHG emissions - LU & dLUC	kg CO ₂ -e kg LW ⁻¹	0.3		
Total GHG emissions	kg CO ₂ -e kg LW ⁻¹	2.3		
Fossil energy use	MJ kg LW ⁻¹	12.6		
Renewable energy generated and consumed	MJ kg LW ⁻¹	0.0		
Freshwater consumption	L kg LW ⁻¹	47.6		
Water stress	L H ₂ O-e kg LW ⁻¹	40.5		
Water scarcity	m ³ kg LW ⁻¹	14.5		
Land occupation	$m^2 kg LW^{-1}$	14.4		
Total freshwater eutrophication potential	kg P kg LW ⁻¹	1.2e-03		
Total marine eutrophication potential	kg N kg LW ⁻¹	1.1e-02		

 Table S16. Comparison of total eutrophication potential, phosphate equivalent, of Australian retail pork with international studies

	Reference	Units	Eutrophication Potential
Australia	This study	g PO ₄ -eq/kg LW	4.1 - 5.3
Australia	This study	g PO _{4eq} /kg retail pork	7.1 - 8.8
Spain (Galicia)	Noya et al. (2017)	g PO ₄ -eq/kg LW	24.6
Denmark	Dorca-Preda et al. (2021)	g PO ₄ -eq/kg LW	15.5
Northern Germany	Reckmann et al. (2013)	g PO _{4eq} /kg pork	23.3
Netherlands^	Rougoor et al.(2015)	g PO _{4- eq} /kg carcass weight	18.4 - 31.1
Great Britain [#]	Fry and Kingston (2009)	g PO _{4eq} /kg pork	57

 Table S17. Resource use and impacts for Australian pork for FY20 and FY22, reported per kilogram of boneless, fat-corrected pork ready for distribution to retail

	Units	National Herd FY20	2.SD (±)	National Herd FY22	2.SD (±)
GHG emissions	kg CO ₂ -e	7.8	0.3	8.0	0.3
GHG emissions - LU & dLUC	kg CO ₂ -e	1.0	0.2	0.7	0.1
Total GHG emissions	kg CO ₂ -e	8.7	0.5	8.7	0.4
Fossil energy use	MJ	38.5	1.2	39.1	1.3
Renewable energy generated and consumed	MJ	0.3	0.0	0.3	0.0
Freshwater consumption	L	236.6	62.8	136.5	40.8
Water stress	L H ₂ O-e	172.1	45.6	110.6	33.1
Land occupation	m ²	27.7	7.3	29.8	8.9
Total freshwater eutrophication potential	kg P	5.2e-04	1.9e-04	5.7e-04	6.5e-05
Total marine eutrophication potential	kg N	1.8e-02	6.5e-04	2.4e-02	9.6e-04

References

- ALCAS (2017) AusLCI. Australian Life Cycle Assessment Society (ALCAS). Available at: http://auslci.com.au/, (Australia)
- Commonwealth of Australia (2023) National Greenhouse Accounts Factors. (Canberra)
- Dorca-Preda T, Mogensen L, Kristensen T, Knudsen MT (2021) Environmental impact of Danish pork at slaughterhouse gate a life cycle assessment following biological and technological changes over a 10-year period. *Livestock Science* **251**, 104622. doi:https://doi.org/10.1016/j.livsci.2021.104622.
- Kingston c, Meyhoff Fry J, Aumonier S (2009) Scoping Life Cycle Assessment of Pork Production, Final Report. http://www.bpex.org.uk/downloads/299473/294935/.
- Noya I, Villanueva-Rey P, González-García S, Fernandez MD, Rodriguez MR, Moreira MT (2017) Life Cycle Assessment of pig production: A case study in Galicia. *Journal of Cleaner Production* 142, 4327–4338. doi:https://doi.org/10.1016/j.jclepro.2016.11.160.
- Pomar C, Andretta I, Remus A (2021) Feeding Strategies to Reduce Nutrient Losses and Improve the Sustainability of Growing Pigs. Frontiers in Veterinary Science 8,. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581561/pdf/fvets-08-742220.pdf.
- Reckmann K, Traulsen I, Krieter J (2013) Life Cycle Assessment of pork production: A data inventory for the case of Germany. *Livestock Science* **157**, 586–596.
- Rougoor C, Elferink E, Lap T, Balkema A (2015) LCA of Dutch Pork: Assessment of three pork production systems in the Netherlands. doi:10.13140/RG.2.1.4933.4644.
- Skerman A, Wilis S, Mcgahan E, Marquardt B (2015) PigBal 4. A Model for Estimating Piggery Waste Production. Department of Agriculture, Fisheries and Forestry (DAFF), (Toowoomba, Australia)

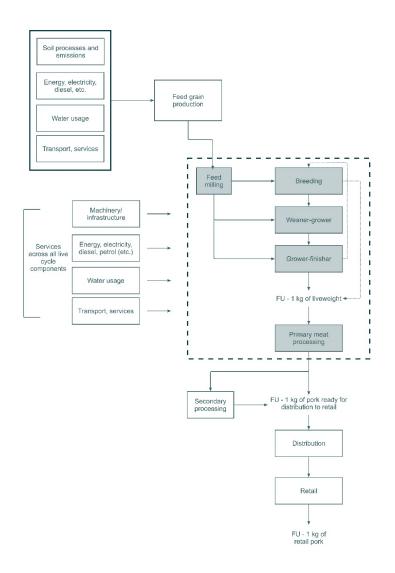


Figure S1. System boundary for Australian pork production (dashed line denotes foreground system)

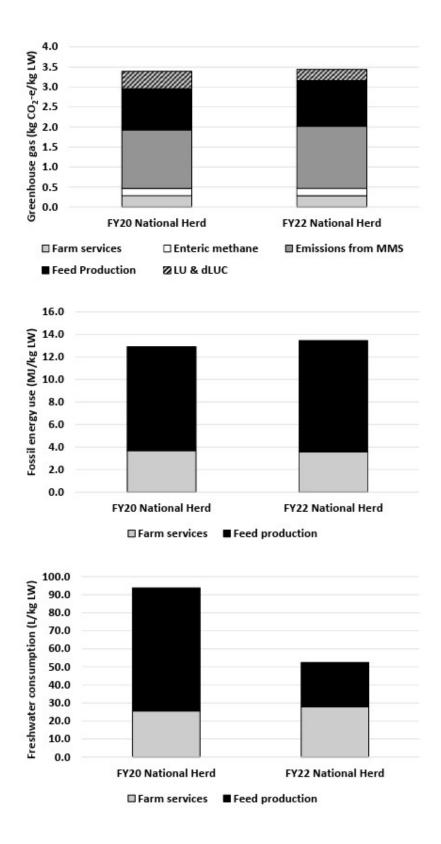
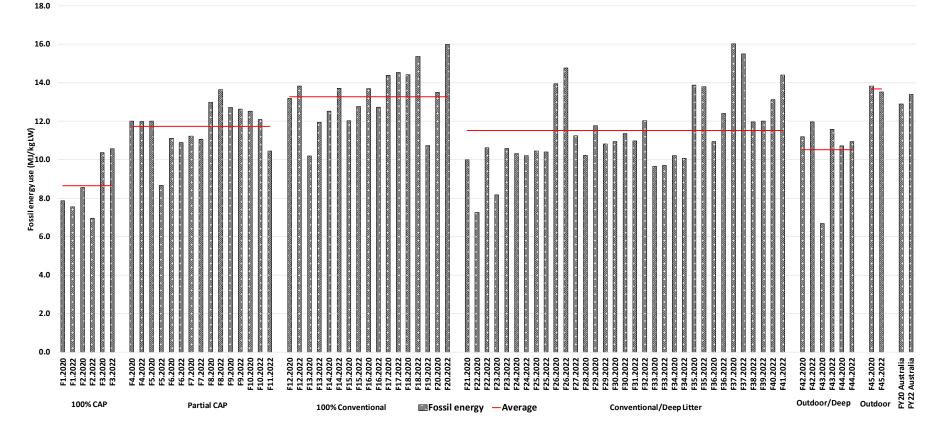
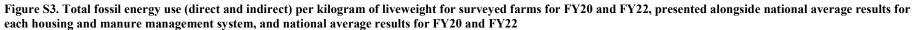




Figure S2. Greenhouse gas emissions (incl. LU and dLUC), fossil energy use, and freshwater consumption for the national herd for FY20 and FY22 reported per kilogram of liveweight

Note that the averages in the figure are the simple averages of the results for each housing/MMS for both years.

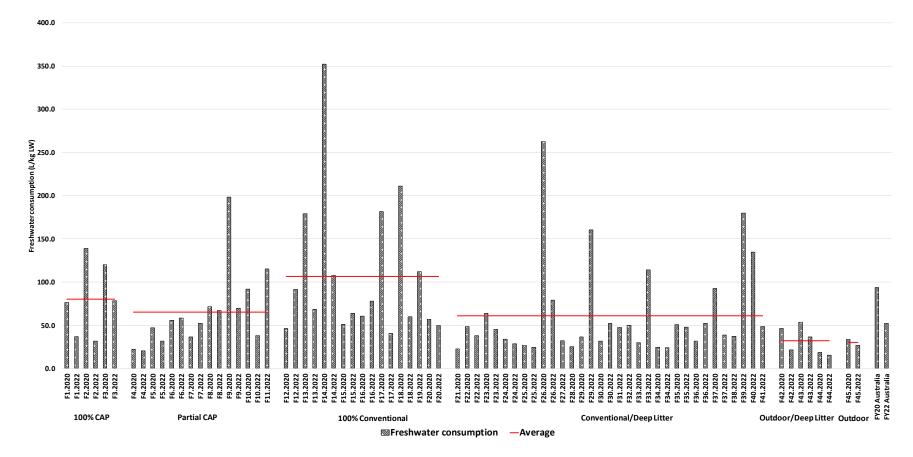
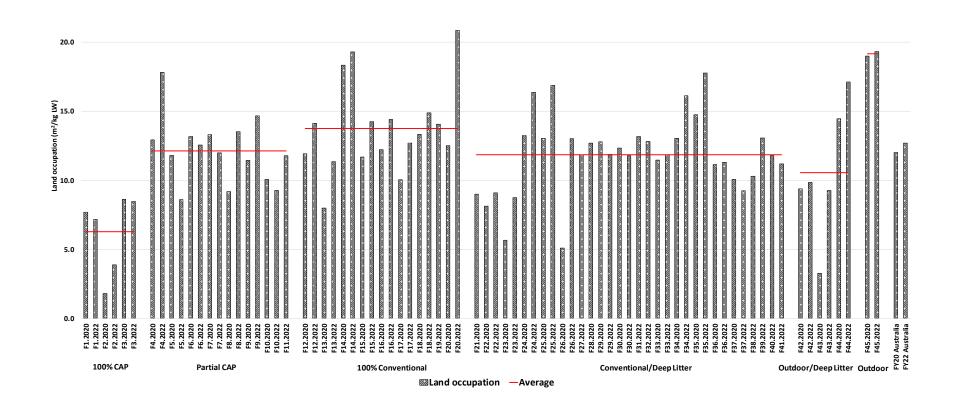



Figure S4. Freshwater consumption per kilogram of liveweight for surveyed farms for FY20 and FY22, presented alongside national average results for each housing and manure management system, and national average results for FY20 and FY22

Note that the averages in the figure are the simple averages of the results for each housing/MMS for both years

Figure S5. Land occupation per kilogram of liveweight for surveyed farms for FY20 and FY22, presented alongside national average results for each housing and manure management system, and national average results for FY20 and FY22

Note that the averages in the figure are the simple averages of the results for each housing/MMS for both years

25.0