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Abstract. Among the terrestrial production animals, chickens are the most efficient users of energy. Apparent
metabolisable energy (AME) is a measure of energy utilisation efficiency representing the difference between energy
consumed and energy lost via the excreta. There are significant differences in the energy utilisation capability of individual
birds that have a similar genetic background and are raised under identical conditions. It would be of benefit to poultry
producers if the basis of these differences could be understood and the differences minimised. We analysed duodenal gene
expression and microbiota differences in birds with different energy utilisation efficiencies. Using microarray analysis,
significant differences were found in duodenal gene expression between high- and low-AME birds, indicating that level of
cell turnover may distinguish different groups of birds. High-throughput sequencing of bacterial 16S rRNA genes indicated
that duodenal microbiota was dominated by Lactobacillus species and two operational taxonomic units, identified as
lactobacilli species, were found to be more abundant (P < 0.05) in low-AME birds. The present study has identified gene
expression and microbiota properties that correlate with differences in AME; further studies will be required to investigate
the causal relationships.
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Introduction

Feed conversion efficiency is a key consideration in efforts to
supply the growing global population with high-quality protein.
Chicken meat accounts for approximately one-third of the
world’s meat consumption, with annual production of over 88
million tonnes (FAO 2011). Price competitiveness, mostly due to
lower production costs than with other meat sources, has
increased the demand for chicken meat (Henry and Rothwell
1995). This competitiveness has been enabled through
genetic and nutritional advances in feed utilisation and
production efficiency. Havenstein et al. (2003) highlighted
these improvements by demonstrating that modern Ross 308
broilers were approximately four times larger, required three
times less food to reach target weight, and had a 3-fold
difference in feed conversion when compared with a 1950s
strain of chicken. Knowledge and tools to facilitate further
improvements will contribute to global food security. In a
typical broiler-production system, all birds have similar

genetics and are raised together under similar environmental
conditions, with access to identical feed and water supplies.
Despite these consistencies, growth performance of individual
birds can be quite variable. Consistent bird performance, together
with flock uniformity, is highly desired by the chicken processors
and is a good indicator of the effectiveness of the production
process (Toudic 2006). Poor flock uniformity results in
management problems, delayed growth, poor feed conversion
ratios and rejected carcasses (Toudic 2006). Improvements in
flock uniformity could increase the proportion of birds that reach
their target weight within a given time, and therefore reduce
numbers of birds falling outside the size standards set for
automated processing-plant equipment (Bedford 2001), and
benefit production efficiency (Mulder et al. 2009).

Given the importanceof birdperformanceandflockuniformity,
extensive research has been undertaken investigating the effects
of various dietary regimens on bird performance. The outcomes
and effects have been measured and quantified in various ways
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such as weight gain, time to market weight and feed conversion
ratio. Apparent metabolisable energy (AME) represents the
efficiency of energy intake and measures the difference between
energy consumed, via the feed, and energy lost, via the excreta
(Farrell 1999). AME is directly influenced by chicken breed, sex,
health and also nutrient availability and digestibility, and can be
manipulated by nutrient composition and additives (Owens et al.
2008). Previous studies have identified considerable differences
in AME values among birds fed an identical diet (Hughes and
Choct 1997). In a flock of the same breed, fed an identical diet,
some birds are able to extract the available nutrients more
efficiently, while others are less efficient and subsequently lose
a greater proportion of energy via the excreta (Hughes 2003,
2004). In poultry, as in human research, knowledge of the
mechanisms underlying variation in efficient utilisation of
availableenergyat ageneexpressionandmicrobiota level is sparse.

In the majority of nutrition studies, key components of a
diet are varied and the differential response of animal or
human subjects is measured to determine the effect of dietary
change. In contrast, few studies have investigated the basis of
differential responses of an outbred population to a single
constant diet. Such work is important because it investigates
the role of the individual and its underlying biology in
determining the efficiency with which nutrients are taken up
and assimilated. Within a population, there will be a distribution
in the value of any continuous parameter that is measured; from
crude measures, such as weight gain, to measures of much finer
detail, such as expression level of a particular gene in a specific
tissue or the abundance of particular microbes within the gut. We
have previously reported that differences can be detected in the
caecal microbiota of chickens with high and low AME values
from a single homogenously treated flock (Stanley et al. 2013).
We were then interested to determine potential differences in
small-intestinal gene-expression patterns and microbiota in
these birds. If significant correlations could be found, it may
contribute to the understanding of the causes of variable bird
performance.

Materials and methods

Birds and diet
Male Cobb 500 broilers (Baiada Hatchery, Willaston, South
Australia) were raised on wood shavings in a floor-rearing pen
in a temperature-controlled room until the commencement of the
AME study period. All birds were given ad libitum access to a
broiler grower diet previously described in Stanley et al. (2012)
that met or exceeded National Research Council guidelines for
broiler chickens (NRC 1994). The feed contained 44.4% of
wheat, 17% soybean meal, 15% barley, 10% canola meal, 5%
peas, 3.2% meat meal, 3% tallow, 1% limestone, 0.5% vitamin
mix, and traces of salt, lysine HCl, DL-methionine and threonine.
All procedures were approved by the Animal Ethics Committees
of the University of Adelaide and the Department of Primary
Industries and Resources South Australia.

Apparent metabolisable energy study
At 13 days post-hatch, 96 chickens were transferred in pairs to
48 metabolism cages located in a temperature-controlled room
initially kept between 25�C and 27�C. Birds were placed in pairs

for an initial acclimation period to minimise stress associated
with isolation. Birds continued to have free access to food and
water before, and during, the experimental period. On Day 15,
birds were placed individually in 96 metabolism cages.

AME values were determined in a classical 7-day energy-
balance study, commencing when birds were 15 days of age.
Bodyweight was recorded at the beginning and end of the 7-day
period. The first 3 days enabled the chickens to adapt to solitary
confinement in the metabolism cages. During the following
4 days, all excreta were collected daily and dried at
80�C. Feed intake was recorded during the adaptation and
collection phases of the study period.

On Day 22, all birds were weighed and retained in individual
cages until Day 25. On Day 25 post-hatch, birds were killed by
cervical dislocation. Tissue (1-cm segment) from themidpoint of
the duodenumwas collected, rinsed in phosphate-buffered saline
and stored in a 5-mL tube containing 2mLofRNAlater (Ambion,
Austin, TX, USA). The adjacent section was used to collect
mucosal scrapings for microbiota analysis. During collection,
samples were stored on ice and then frozen (�20�C) for later
processing to extract nucleic acids.

Gross energy (GE) values of feed were measured with a Parr
isoperibol bomb calorimeter (Parr Instrument,Moline, IL, USA).
Gross energy values of dried excreta were also measured and
AME values (in MJ/kg DM) were calculated as follows:

AMEdiet ¼ ½ðGEdiet · feed consumedÞ
� ðGEexcreta · dry excretaÞ�=feed

consumed=DM content of diet:

Microarray sample preparation
Total RNA was isolated from each duodenal sample by using
the Meridian total RNA isolation kit (Cartagen Molecular, San
Carlos, CA, USA) according to the manufacturer’s instructions.
The quantity of RNA and 260 : 280 and 260 : 230 ratios were
determined using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA) and RNA
was subsequently stored at �80�C. RNA samples that had a
260 : 280 ratio above 1.8 were used for the study. Total RNA
(3 mg) was reverse-transcribed into cDNA by using oligo dT20,
as per the Invitrogen Superscript III First Strand Synthesis
System protocol (Invitrogen, Carlsbad, CA, USA). The cDNA
labelling with Cyanine 3, hybridisation and washing was
performed following NimbleGen Arrays User’s Guide protocol
without modifications (http://www.nimblegen.com/downloads/
support/05434505001_NG_Expression_UGuide_v6p0.pdf,
verified 21 August 2013).

Microarray design
A custom designed NimbleGen 12x135K chicken high-density
multiplex microarray was used in this experiment (NimbleGen
design #10309). The microarray contained a set of 65 849 long
oligonucleotides (60–75 nt) based on chickenUniGene sequence
families. Eachgenewas represented byat least two independently
designed probes and each probe was present in duplicate on the
array. Each fabricated glass slide contained 12 identical arrays
that were independently hybridised. More information on the
platform can be found on the NCBI Gene Expression Omnibus
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under platform Accession number GPL17190 and dataset
number GSE47213.

Microarray analysis
NimbleScan Software Version 2.5.26 (Roche NimbleGen) was
used to extract the microarray data. The data were then analysed
using Bioconductor (Gentleman et al. 2004) and several other
packages, including (1) arrayQualityMetrics (Kauffmann et al.
2009) for quality control, (2) preprocessCore (Bolstad 2010) for
background correction and normalising and (3) GeneFilter
(Gentleman et al. 2009) for removal of low-intensity features.
Limma (Smyth 2004) was initially used to identify differentially
expressed genes. So as to minimise false positives, the
GeneSelector package was utilised, as described by Boulesteix
and Slawski (2009). Briefly, selection of differential genes can
be highly influenced by the statistical method used, and the
overlap of genes selected using the same significance value
can be quite low. GeneSelector ranks genes on the basis of
how well they perform in a selected number of statistical tests
and minimises the number of false positives. Ranked lists, based
on ordinary Student’s t-test, significance analysis of microarrays
(Chu et al. 2000), limma parametric empirical Bayes (eBayes)
testing (Smyth 2004) and fold difference were first generated for
each of the criteria. Then the Markov chain model within the
GeneSelector package was used to aggregate the ranked lists of
all criteria into a list of genes that are significant, independent
of the method used. Gene ontology (GO) analysis and data
visualisation and exploration were performed using the
database for annotation, visualisation and integrated discovery
(Huang et al. 2009).

Microbial-DNA preparation
Twenty birds, including those with the 10 highest and 10 lowest
AME values, were selected for microbiota analysis by 16S rRNA
gene sequencing. Mucosal scrapings from the duodenal section
of the small intestine were taken from each bird and diluted 1 : 4
with phosphate buffered saline. Total DNA was isolated using
the method of Yu and Morrison (2004). Briefly, cells were lysed
using lysis buffer (500 mM NaCl, 50 mM Tris–HCl pH8.0,
50 mM EDTA and 4% sodium dodecyl sulfate) and sterile
zirconium beads, and by homogenising (Precellys 24 tissue
homogeniser; Bertin Technologies, Montigny-le-Bretonneux,
France) at the maximum instrument speed of 6500g, 6 · 10 s.
Nucleic acid pellets were resuspended in Tris–EDTA buffer
and digested with DNase-free RNase and proteinaseK to
remove RNA and protein and purified using QIAamp columns
(Qiagen, Chadstone, Vic., Australia). Quantity and quality
of DNA were measured on a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific).

Polymerase chain reaction (PCR) amplification of 16S
rRNA gene sequences
DNA was amplified using Bio-Rad iProof DNA polymerase.
Each PCR reaction contained 2 mL of template DNA, 20 mL of
iProof 2X master mix (containing buffer, nucleotides and
iProof enzyme), 2 mL of each primer (final concentration
0.5 mM), and 14 mL of water. The primers used were selected
to amplify the V1–V3 region of the 16S rRNA gene (forward

primer (Lane 1991), 50 AGAGTTTGATCCTGG 30; reverse
primer, a truncated version of W31 (Snell-Castro et al. 2005),
50 TTACCGCGGCTGCT30) and contained additional sequences
for the pyrosequencing process, including sequence barcodes
(Roche/454 extended barcode set, 454 Life Sciences, Branford,
CT, USA) that allowed each sample to be identified from the
pools used for sequencing. Amplification of products was
performed in an Eppendorf Mastercycler (Eppendorf South
Pacific, North Ryde, NSW, Australia) using the following
conditions: 98�C for 60 s then 25 cycles of 98�C for 5 s, 40�C
for 30 s, 72�C for 30 s, elongation at 72�C for 10 min, then held
at 5�C. The yield of PCR amplification of each sample was
assessed by running 10 mL of the PCRmix on a 1.2% agarose gel.

High throughput sequencing and analysis of 16S rRNA
gene amplicons
The amplified 16S rRNA gene samples from each bird were
pooled using equivalent amounts of each PCR product. The
pooled sample was sequenced using the Roche/454 FLX
Genome Sequencer (454 Life Sciences) according to the
manufacturer’s instructions. Sff files were split into fasta and
qual files using PyroBayes (Quinlan et al. 2008) and data were
analysed usingMothur v1.12 (Schloss et al. 2009), Qiime v1.0.0
software (Caporaso et al. 2010b) and ARB (Ludwig et al. 2004).

Pre-processing undertaken in Mothur included qual file
processing (average quality of 25) and removal of Pintail
detected chimeric sequences. The fasta file, with chimeras
removed, was then used for further analysis in Qiime v1.5
software using the suggested Qiime default settings. Further
quality filtering selected sequences between 300 and 600
nucleotides, allowed a maximum homopolymer run of six
nucleotides and no ambiguous bases. In total, 176 819
sequences remained after quality trimming, with a mean length
of 565 nucleotides and mean sample size of 8840 sequences.
A filter was applied to eliminate operational taxonomic units
(OTUs) represented with less than 10 sequences or present in
fewer than five samples. This resulted in the identification of
152 OTUs using 97% sequence similarity. The phylogeny of
representative sequences from the OTUs was assessed by
comparison to the EzTaxon (Chun et al. 2007) database. The
statistical tools used to assess microbiota differences between
high- and low-AME birds were used from within Qiime and
are detailed with the results.

Results

Microarray

Birds were selected for microarray analysis on the basis of AME
values; a Student’s t-test indicated that the six highest and
six lowest AME-ranked birds were significantly (P = 7.82e–4)
different. Feed conversion ratio, bodyweight gain and feed
intake were not significantly different between high- and low-
AME birds.

Poor hybridisation results with the sample from the 6th lowest
AME bird meant that it had to be excluded from the analysis,
leaving six arrays for high and five for low birds. The Genefilter
package was used to remove features that had intensity values
near background in at least 8 of the 10 arrays. eBayes testing
(Fig. S1, available on the journal website as Supplementary
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Material for this paper) reported that 428 genes were more highly
expressed in the high-AMEbirds and431genesweremore highly
expressed in the low-AME birds (P < 0.01, over 2-fold
difference). Only 20 genes were more highly expressed
in high- and 26 in low-AME samples with higher than a 3-fold
difference. The highest-fold difference across all genes was
3.8-fold increase in the low-AME birds for the unannotated
Unigene Gga.24220 (Table S1, available on the journal
website as Supplementary Material to this paper). The
GeneSelector package was used to identify genes recognised
as differentially expressed across a range of statistical analysis
methods. The overlap of significance using the different tests is
presented in Fig. 1. This resulted in more than 2-fold higher
expression of 360 genes in low-AME birds (Table S2, available
on the journal website as Supplementary Material to this paper)
and 325 genes in high-AME birds (Table S3, available on the
journal website as Supplementary Material to this paper), with
the lowest ranked gene scoring P-values of 0.0043, 0.0102 and
0.0012 for eBayes, significance analysis of microarrays and
Student’s t-test, respectively (Table S1).

The database for annotation, visualisation and integrated
discovery was used to identify GO categories statistically more
abundant in differentially expressed genes than expected by
chance. A major issue in analysing chicken expression data is
the low level of annotation for the chicken genome. Among the
genes more highly expressed in low-AME birds, only 35% had
functional annotations. On the basis of the annotations available,

this group of genes was enriched in GO categories involved
mainly in regulation of transcription and basic cell maintenance.
GO clusters and categories are given in Tables S2–S3. The genes
more highly expressed in high-AME birds were similarly poorly
annotated and only 38.4% had useful functional annotations.
GO analysis of the annotated genes indicated enrichment only of
general cell maintenance-related GO categories. For both
groups of genes, the lowest P-value for any GO category was
~0.003; however, the lowest Bonferoni corrected P-values were
very high, 0.37 and 0.71, when inspecting genes more highly
expressed in low- and high-AME birds, respectively. The 43
genes that had the highest expression differences, between 3 and
3.8, were mostly unannotated.

Microbiota analysis

Birds were selected for microbiota analysis on the basis of AME
values; a Student’s t-test indicated that the 10 highest and 10
lowest AME-ranked birds were significantly (P = 7.74e–6)
different. These groups included all the birds used for the
microarray analysis, plus four additional birds in each class,
added to increase statistical power of the analysis. Inspection
ofa-diversity plots indicated that depth of sequencing gave good
sample coverage and showed very low diversity and strong
dominance in the microbial community of the duodenum, with
statistically significant differences in several a-diversity
measures (Fig. S2, available on the journal website as
Supplementary Material to this paper). Relatively low diversity
compared with other sections of the chicken gut is supported by
the total dominance of members of the Firmicutes phylum
(99.37% of total sequences), Lactobacillaceae (99.21%)
dominance on a family level and Lactobacillus (99.07%)
dominance on a genus level. The 27 OTUs with abundance
higher than 0.1% of total sequences represented 97% of all
sequences identified in the duodenal samples and were
identified as Lactobacillus salivarius (47.4%), L. crispatus
(34.8%), L. reuteri (11.7%), L. johnsonii (2.3%) and
L. taiwanensis (0.7%). These were classified with more than
95% sequence similarity to type strains catalogued in the
EzTaxon database (Table S4, available on the journal website
as Supplementary Material to this paper). Representative
sequences have been uploaded to the European Nucleotide
Archive (Accession numbers HG314125–HG314153).

A principal coordinate analysis plot (Fig. 2) based on
Weighted UniFrac results showed the relationship among
samples and suggested two disparate groupings within the
high-AME group. ANOVA between high- and low-AME birds
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Fig.1. GeneSelector comparisonof four statisticalmeasuresof significance:
ordinary Student’s t-test, significance analysis of microarrays (SAM), limma
(eBayes) testing and fold difference. Genes are coloured by their ranking in
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Fig. 2. A principal coordinate analysis (PCoA) plot based on weighted
UniFrac, representing 10 microbiota samples from high-apparent
metabolisable energy (AME) (blue) and low-AME (green) birds.
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detected only two OTUs differentially abundant between the
two groups. The two differential OTUs (Table S5, available on
the journal website as Supplementary Material to this paper);
OTU6 (P-value 0.02) and OTU11 (P-value 0.04) were 2- and
2.5-fold more abundant, respectively, in low-AME birds. Qiime
RDP classifier identified both OTUs as Lactobacillus. To further
classify, sequences were submitted to EzTaxon and in separate
analysis placed in the ARB Greengenes database tree (Fig. 3);
EzTaxon placed OTU6 as closest to L. salivarius (EzTaxon
similarity to Type strain ATCC 11741(T) was 95.85%) and
OTU11 closest to L. crispatus (EzTaxon similarity to Type
strain DSM 20584(T) was 96.15%). In ARB, we compared the
sequences to all culturable Lactobacillus strains and placed
them, with 100% sequence similarity, to L. crispatus str.
LAB32 (OTU 11) and L. salivarius str. C22 (OTU6).

Discussion

In the present study, birds were raised under identical conditions
with access to the same feed,water and environmental conditions.
As previous studies have reported that AME is influenced by
many factors (Owens et al. 2008), in the present study, we
investigated the additional factors of the duodenal microbiota
and duodenal gene expression to determine whether correlations
could be found with the efficiency with which birds retained
energy from food. The multi-test analysis performed within
the GeneSelector package indicated differential expression of
several thousand genes in the duodenum between the high- and
low-AME birds. The expression differences were subtle, with

only a few hundred genes with fold changes of more than 2 and
only 46 genes with differential expression levels over 3-fold. The
paucity of functional annotations currently available for the
chicken genome meant that only limited information was
available for the differentially expressed genes. The only gene
ontology groups that were over-represented among the greater
than 2-fold differentially expressed genes were those relating
to regulation of transcription and basic cell maintenance. This
suggested that the basis for differential gene expression in the
birds with high AME values is related to a higher rate of
cell turnover and renewal within the duodenum rather than
differential expression of genes encoding digestive functions
such as digestive enzymes or nutrient transporters. It is of
course possible that there are genes that are directly involved
in nutrient and energy capture represented in the greater than
60% of differentially expressed genes for which no useful
functional annotation was available.

The observed correlations between differential expression
of some genes and the efficiency with which chickens can
retain energy provide the impetus for further studies of the
causal links between gene expression and bird performance. In
further studies, it would be interesting to determine whether the
genes found to be differentially expressed in the duodenum are
also differentially expressed in other sections of the GIT, or
whether other genes are of importance in other sections of the
gut. Given that the differences between high- and low-AME
birds appeared to be related to general cell turnover, it is perhaps
likely that this would be a common feature along the entire
length of the digestive tract. One motivation in carrying out

Fig. 3. Tree showing representative sequences for operational taxonomic units OTU6 and OTU11 placed into a Greengenes tree
containing 71 390 culturable isolates. Sequences for the two differential OTUs and their nearest neighbours were aligned against the
Greengenesdatabase randomly selected representatives ofLactobacillusbyusingPyNAST(Caporaso et al. 2010a) inQiime. InARB,
sequences were added to the Greengenes tree using ARB parsimony. Bootstrap (1000) analysis was performed in randomised
axelerated maximum likelihood (RAXML) (Stamatakis et al. 2008). Bootstrap values over 50 are shown on the tree.
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this research was to determine whether there are ways in which
birds could be manipulated or selected to be as efficient as
possible at retaining energy. If there is more than just a
correlation, but rather a causal link between differences in
gene expression and energy efficiency, then it will be
important to understand the basis of the subtle underlying
differences in gene expression. Are the differences in gene
expression established by the genetics of the birds or are they
directly influenced by the gut environment, for example, the exact
composition of feed or the microbiota that establishes in the gut?

In the current study, the duodenum-associatedmicrobiota was
dominated by lactobacilli, comprising up to 99%of the sequences
in some birds. Statistical analysis revealed twoOTUs, OTU6 and
OTU11, both members of the Lactobacillus family, to be more
abundant in low-AMEbirds. Theywere identified asmost closely
related to L. salivarius and L. crispatus, respectively, on the basis
of homology to characterised strains represented in the database.
Other OTUs identified as closely related to L. salivarius and
L. crispatus were not identified as differentially abundant
between high- and low-AME birds. Previously, Torok et al.
(2008) reported correlations between the composition of ileal
and caecal microbiota and AME values. Accordingly, it appears
that the microbiota across the small intestine and the caecum
may influence or be influenced by the efficiency of energy
retention.

AME, as a measure of an animal’s ability to efficiently
extract energy from the feed, is an important consideration in
directing the formulation of low-cost high-efficiency feed.
Improving animal performance has long been a priority in
agricultural research and has resulted in massive productivity
improvements over several decades. The present study identified
aspects of duodenal gene expression and microbiota that
correlate with differences in the efficiency of energy retention.
The data indicated correlations but could not infer any causation.
As such, it is not yet apparent whether the manipulation of gene
expression or microbiota composition could have beneficial
impacts on AME; this awaits further experimental work.
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