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Abstract: We present evidence to show that changes in the Sun’s equatorial rotation rate are synchronized with
changes in its orbital motion about the barycentre of the Solar System. We propose that this synchronization is
indicative of a spin–orbit coupling mechanism operating between the Jovian planets and the Sun. However, we
are unable to suggest a plausible underlying physical cause for the coupling. Some researchers have proposed
that it is the period of the meridional flow in the convective zone of the Sun that controls both the duration
and strength of the Solar cycle. We postulate that the overall period of the meridional flow is set by the level
of disruption to the flow that is caused by changes in Sun’s equatorial rotation speed. Based on our claim that
changes in the Sun’s equatorial rotation rate are synchronized with changes in the Sun’s orbital motion about
the barycentre, we propose that the mean period for the Sun’s meridional flow is set by a Synodic resonance
between the flow period (∼22.3 yr), the overall 178.7-yr repetition period for the solar orbital motion, and the
19.86-yr synodic period of Jupiter and Saturn.
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1 Introduction

Attempts to link solar activity on the surface of the Sun
to planetary influences have had a long and checkered
history. The published research has shown that there is
considerable circumstantial evidence suggesting a link
between:

a) Sunspot activity and the movement of the Sun about the
centre-of-mass (CM) of the Solar System (Jose 1965;
Landscheidt 1981, 1999; Fairbridge & Shirley 1987;
Chárvátova 1990, 2000; Zaqarashvili 1997). Specifi-
cally, between the strength of the sunspot cycles and
the rate of change of the orbital angular momentum of
the Sun about the CM of the Solar System (Jose 1965).

b) Deviations in the rotation rate of sunspots and the syn-
chronicity of the orbital periods of the Jovian planets
(Javaraiah & Gokhale 1995; Javaraiah 2003).

c) North–South asymmetries between solar sunspot
activity and differential rotation produced by a spin–
orbit coupling between the Sun and the Jovian planets
(Juckett 2000).

However, these efforts to link solar activity to planetary
influences have suffered from three major problems:

a) The tides induced on the surface of the Sun by the
planets are so small that it is difficult to image that they
could have any significant influence on solar surface
activity. This means that if there is any connection, it

must be via a transfer of orbital angular momentum
from the Jovian planets into spin angular momentum
of the Sun. As yet, no one has come up with a plausible
physical mechanism that would produce a spin–orbit
coupling between the Sun and the Jovian planets.

b) While Jose (1965) has shown that there is a good tem-
poral match between the variations seen in the orbital
angular momentum of the Sun about the Solar System’s
Barycentre and the variations seen in the sunspot cycle,
the match is not always exact, e.g. Jose (1965) had to
introduce arbitrary changes to the phase of the solar
cycles in order to force a match between the planetary
driving mechanism and variation in the level of solar
activity.

c) The instantaneous rate of change in the Sun’s angular
momentum about the barycentre of the Solar System
repeats itself with a periodicity of 178.8 yr (Jose 1965),
so that there should be no pause in the planetary driving
mechanism. How then do we explain the lull in solar
activity that occurred during the Maunder minimum?

The purpose of this paper is to address the first two
problems. The third problem concerning the Maunder
minimum is addressed by Fairbridge & Shirley (1987) and
Chárvátova (1990, 2000) and so it will not be discussed in
this paper.

In Section 2 we show how the Sun’s orbital angular
momentum about the CM of the Solar System periodically
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decreases and then increases at successive quadratures of
Jupiter and Saturn.

In Section 3 we present evidence to show that there
is a direct link between the decreases and increases in
the Sun’s orbital angular momentum about the CM of the
Solar System, and the observed decreases and increases
in the Sun’s equatorial rotation speed. We believe that this
link provides strong circumstantial evidence that there is
a spin–orbit coupling mechanism operating between the
Jovian planets and the Sun. We propose that it is these
changes in the Sun’s rotation speed that are responsible for
variations in the speed of the meridional flow.We postulate
that it is the planetary induced changes in speed of the
meridional flow that control both the duration and strength
of sunspot activity on the Sun’s surface. Finally, in Section
4 we present our conclusions.

2 The Sun’s Orbital Angular Momentum

Given the fact that the Sun is over 1000 times the mass of
Jupiter, it is often assumed that the CM of the Solar System
is located at the centre of the Sun. In fact, the centre of the
Sun moves about the CM of the Solar System in a series of
complex spirals with the distance between the two varying
from 0.01 to 2.19 solar radii (Jose 1965). This motion is
the result of the gravitational forces of the Jovian planets
tugging on the Sun.

Jose (1965) quantified the motion of the Sun about the
CM of the Solar System and showed that the time rate of
change of the Sun’s angular momentum about the instan-
taneous centre of curvature dP /dT , or torque, varies in
a quasi-sinusoidal manner similar to the variation seen
in the solar sunspot number. In fact, Jose (1965) found
that the temporal agreement between variations in dP /dT

and the solar sunspot number were so good that it strongly
hinted that there was a connection between the planetary
induced torques acting on the Sun and sunspot activ-
ity. However, he did not fully explain how this connection
worked.

Zaqarashvili (1997) proposed that the ellipticity of the
orbit of the Sun about the CM of the Solar System was
responsible for periodic differential rotations within the
solar interior and that these internal motions governed the
properties of the solar sunspot cycle. He made the simpli-
fying assumption that Sun’s path about the CM of the Solar
System was solely determined by Jupiter. In this case, the
Sun moves about the CM of the Solar System in a slightly
elliptical orbit (e = 0.048) with a semi-major axis of 1.08
solar radii and a period of 11.86 yr, i.e. the Sun rotates
about a point located just above the solar surface.

Zaqarashvili’s model made the first tentative steps
to identify a spin–orbit coupling mechanism that might
explain how planetary induced torques could produce
periodic differential rotation within the solar interior
(Zaqarashvili 1997). Unfortunately, his assumption, that
the Sun’s motion about the CM of the Solar System is
primarily determined by Jupiter, is far too simplistic.

Figure 1 shows a typical orbit of the Sun about the CM.
It is not the simple ellipse you would expect if gravitational

Figure 1 A diagram showing a typical orbit for the Sun about
the CM of the Solar System, with the position of the Sun marked
by an ‘X’ at the times when Jupiter and Saturn are in opposition
(1), first quadrature (2), conjunction (3), second quadrature (4), and
opposition (5).

effects of Jupiter dominated the Sun’s motion. The Sun’s
orbit about the CM deviates from an ellipse primarily
because of the added influence of Saturn.

Obviously, when Jupiter is at inferior conjunction as
seen from Saturn, i.e. the planets are on the same side of
the Sun1, the Sun will be at its greatest distance from the
CM; when Jupiter is at superior conjunction, as seen from
Saturn, i.e. the planets are on opposite sides of the Sun2,
the Sun will be closest to the CM. Similarly, when the
planets are in quadrature, the Sun’s distance from the CM
will be roughly the same and somewhere in between these
two extremes.

This point is highlighted in Figure 1 where we have
marked a set of sequential events concerning the orbits
of Jupiter and Saturn along the Sun’s orbit about the CM.
Jupiter and Saturn start in opposition at (1), first quadrature
at (2), conjunction at (3), second quadrature at (4) and
finally back to opposition at (5).

The net effect of adding the gravitational influence of
Saturn to that of Jupiter upon the Sun’s orbit about the CM
is as follows:

a) The times at which the Sun experiences maximum
torque (dP /dT ) as it moves around the CM of the
Solar System, corresponds very closely with the times
of quadrature for Jupiter and Saturn (Jose 1965) i.e.
points (2) and (4) in Figure 1.

b) Similarly, the times at which the torque acting on the
Sun is zero (this also the time at which the torque acting
on the Sun is most rapidly changing) correspond very
closely with the times of opposition and conjunction
of Jupiter and Saturn, i.e. points (1), (3), and (5) in
Figure 1.

Every 9.9 ± 1.0 yr, the planet Saturn is in quadrature
with the planet Jupiter (i.e. the angle between Saturn and
Jupiter, as seen from the Sun, is 90 deg). Figure 2 shows the
orbital configuration of a quadrature of Jupiter and Saturn

1 In an inferior conjunction, the superior planet (Saturn) is ‘in opposition’
to the Sun, as seen from the inferior planet (Jupiter), and so we will refer
to this as Jupiter and Saturn being in opposition.
2 When Jupiter is at superior conjunction as seen from Saturn, we will
refer to this as Jupiter and Saturn being in conjunction.
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Figure 2 The Quadrature Effect when Saturn follows Jupiter: The
gravitational pull of the Sun on Jupiter increases Jupiter’s orbital
speed. Conversely, the gravitational pull of Jupiter on the Sun
decreases the Sun’s orbital speed about the CM of the Solar System.

Figure 3 A plot of the speed of the Sun along its orbit about the
CM of the Solar System, between the oppositions of Jupiter and
Saturn in 1842.2 and 1861.9. OJS: Opposition of Jupiter and Saturn,
QJS: Quadrature, CJS: Conjunction. N.B. the solid curve in figure
3 should be smooth; its jagged nature is simply an artifact that is
produced by the digitization of Jose’s original data by the author.

when Saturn follows Jupiter in its orbit. Referring to this
diagram, we see that Saturn drags the CM of the Solar
System off the line joining the planet Jupiter to the Sun.
As a result, the gravitational force of the Sun acting upon
Jupiter speeds up its orbital motion about the CM. At the
same time, the gravitational force of Jupiter acting on the
Sun slows down the orbital speed of the Sun about the CM.

However, the reverse is true at the next quadrature,
when Saturn precedes Jupiter in its orbit. In this planetary
configuration, the mutual force of gravitation between the
Sun and Jupiter slows down Jupiter’s orbital motion about
the CM and speeds up the Sun’s orbital motion about the
CM. Hence, the Sun’s orbital speed about the CM should
periodically decrease and then increase as you move from
one quadrature to next (Jose 1965).

The curves published by Jose (1965) showing the
motion of the Sun about the CM can be used to directly
measure the speed of the Sun along its orbital path. Figure

3 shows the speed of the Sun along its orbit, between
the oppositions of Jupiter and Saturn in 1842.2 and
1861.9.

Superimposed on Figure 3 are symbols showing the
syzygies and quadratures of Jupiter and Saturn. This figure
clearly shows that our prediction about the Sun’s orbital
speed is indeed correct. In this plot, we see that the speed
of the Sun almost halves (from ∼16 to 8 m s−1) over the
period from 1842 to 1850, roughly centred on the time
of the first quadrature in 1846.5. And then after reaching
a minimum near conjunction in 1851.8, the speed almost
doubles (from ∼8 to 15 m s−1) over the period from 1850
to 1860, again roughly centred on the time of quadrature
in 1856.9.

It is important to note that it is not just the speed of the
Sun about the CM that changes between oppositions but
also the Sun’s orbital radius about the CM as well. During
the eight-year time period between 1842 and 1850, for
example, the Sun’s orbital radius about the CM changed
from ∼2 RO to almost zero. This means that there was
an overall decrease in the Sun’s angular momentum about
the CM of ∼4.5 × 1040 Nms. Similarly, between 1850 and
1860, the Sun’s orbital radius about the CM increased from
zero to 1.5 RO, resulting in an increase of the Sun’s angular
momentum about the CM of ∼3.2 × 1040 Nms.

Thus, the torque acting on the Sun about the CM starts
out at zero at opposition, reaches a minimum value at the
first quadrature (when Saturn follows Jupiter), returns to
zero at the following conjunction, reaches a maximum at
the second quadrature (when Saturn precedes Jupiter), and
the finally returns to zero when the planets return to oppo-
sition. Variations in the torque of this nature produces a
strong breaking of the Sun’s orbital motion about the CM
near the time of first quadrature, accompanied by a sig-
nificant decrease in the Sun’s angular momentum. This
is followed by a strong acceleration of the Sun’s orbital
motion about the CM near the time of the second quadra-
ture, accompanied by a comparable increase in the Sun’s
angular momentum.

Published plots of the torque (dP /dT ) acting on the
Sun, where the torque is measured about the instantaneous
centre of curvature of the Sun’s orbit about the CM (Jose
1965), show that this is in fact what happens to the
Sun. Jose’s (1965) plots show the torque varying in a
quasi-sinusoidal manner, starting out at zero at opposition,
reaching a minimum at the first quadrature, returning to
zero at the following conjunction, reaching a maximum at
the second quadrature and finally returning to zero at the
next opposition. The average time taken for this cycle to
repeat itself is simply set by the synodic period of Jupiter
and Saturn, i.e. 19.86 yr.

Figure 4 shows a plot of dP /dT , derived from data in
the paper by Jose (1965), for one cycle between 1901.6
and 1920.9 (solid line). Superimpose on this plot (dashed
line) is a sinusoidal function with a period equal to the
time between the consecutive oppositions at 1901.8 and
1921.8 (i.e. 20.0 yr) and an amplitude chosen to match of
the first minimum.
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Figure 4 A plot of dP /dT derived from data published in the paper
by Jose (1965) for one cycle between 1901.6 and 1920.9 (solid line).
Superimpose on this plot (dashed line) is a sinusoidal function with
a period equal to the time between the consecutive oppositions at
1901.8 and 1921.8 (i.e. 20.0 yr) and an amplitude chosen to match
of the first minimum.

We can see from Figure 4 that it is a reasonable first
approximation to say that the Sun’s orbital motion around
the CM of Solar System is being driving by a torque
(dP /dT ) that is varying sinusoidally with a period of
∼19.9 yr. However, there are other weaker perturbing
influences that are advancing or retarding the times for
the maxima, minima and zero points of dP /dT , compared
to the cardinal planetary configurations. These weaker
perturbations are primarily caused by the combined grav-
itational influences of Neptune and Uranus (Fairbridge &
Shirley 1987). However, in this paper, we will ignore these
effects upon the motion of the Sun, in order to simplify our
arguments. Nevertheless, future papers on this topic will
have to account for these important perturbing effects.

3 Evidence for a Spin–Orbit Coupling

3.1 A Synodic Resonance?

The Schwabe cycle was discovered by Samuel Heinrich
Schwabe in 1843, when he noticed that the number of
sunspots seen on the Sun’s surface increased and then
decreased over a period of about 10 yr (Schwabe 1843). In
reality, the actual cycle length of the Schwabe cycle can
vary from about 9 to 14 yr (Rogers et al. 2006), although
it does oscillates about a long-term average value of about
11.1 yr.

Normally, the length of the sunspot cycle is measured
from one solar minimum to the next. The simple reason for
this is that it is easier to identify the time of solar minimum
more precisely than the time of solar maximum. Indeed,
there are some solar to that have two distinct peaks (e.g.
cycle 23) making it difficult to identify the actual time of
maximum solar activity.

By convention, the time of solar minimum is calcu-
lated using the smoothed sunspot number. The smoothed
sunspot number is obtained by taking the 12-month mov-
ing average of the monthly sunspot number. It is generally
agreed that solar minimum takes place when the smoothed
sunspot number reaches a minimum. Strictly speaking,

this means that solar cycle lengths are not well determined
prior to January 1749, since only yearly sunspot numbers
were systematically reported prior this date. It is possible,
however, to use either the annual Wolf (Zurich) sunspot
number or the group sunspot number, to make reasonable
estimates of the times of solar minimum back until the
start of solar cycle −4 in 1698.0.

If we measure the average length of the Schwabe
cycles, from one solar minimum to the next, for cycle num-
bers −4 to 23, we get 11.1 ± 1.2 yr (Rogers et al. 2006),
using Wolf sunspot numbers and 11.0 ± 1.1 yr (Usoskin &
Mursula 2003), using group sunspot numbers.

George Hale discovered that it took two Schwabe
cycles (or one Hale cycle) for the magnetic polarity of
sunspot pairs to reverse and then return to their original
state (Hale 1908). This means that the sunspot activity
cycle actually takes roughly 22 yr to repeat itself.

Again, if we measure the average length of the Hale
cycle, for solar cycle pairs, starting at cycle number −4 and
finishing at cycle number 23, we get 22.0 ± 2.0 yr (Rogers
et al. 2006) using Wolf sunspot numbers and 22.1 ± 1.9 yr
(Usoskin & Mursula 2003), using group sunspot numbers.

Now, there are two dominant ‘fixed’ time scales asso-
ciated with the torques applied to the Sun by the Jovian
planets. One is the 19.858-yr synodic period of Jupiter and
Saturn. The other is the repetition time scale for the plane-
tary torques as a whole, which is 178.8 yr (Jose 1965). This
raises the question as to why there is a near resonances
between the synodic period of Jupiter and Saturn and a
time period (∼22.3 yr) that closely matches the long-term
average length of the Hale cycle (22.1 ± 1.9 yr), such that:

22.34 × 19.859

22.34 − 19.859
= 178.8 yr (1)

It seems very unlikely that this just happened by chance.
A much more plausible explanation is that there is an 8:9
resonance between the average length of the Hale sunspot
cycle and synodic period of Jupiter and Saturn, with eight
Hale cycles equal to nine Synodic periods for Jupiter and
Saturn equal to 178.8 yr (one de Vries, or Suese, Cycle).

Hathaway et al. (2003) claimed that the average length
of the Hale sunspot cycle is set by the period of the merid-
ional flow in the Sun’s convective layer. If they are correct,
then it possible that the mean period of the meridional flow
(∼22.3 yr) is locked into a synodic like resonance with
the 19.86-yr synodic period of Jupiter and Saturn and the
178.7-yr period for the planetary induced torques that are
acting on the Sun.

3.2 Planetary Syzygies

The time of oppositions and conjunction (i.e. syzygies)
for Jupiter and Saturn closely corresponds to the time at
which the Sun experiences its maximum change in torque
about the CM of the Solar System. Thus, if there is any
connection between the planetary induced torques and the
sunspot cycle, you might expect to see the effects of these
periodic peaks in the shear force in the sunspot number
record.
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Figure 5 Figures 5a to 5c show the yearly International (Wolf)
Sunspot Number from 1766 to 1823. These graphs cover sunspot
cycles 2 to 6. Superimposed on these plots are filled triangles show-
ing the times of the syzygies for Jupiter and Saturn and filled
diamonds showing the quadratures.

Figures 5a to 5c show the yearly International (Wolf)
Sunspot Number from 1766 to 18233. These graphs cover
sunspot cycles 2 to 6. Superimposed on these plots are data
points (filled triangles) showing the times of the syzygies
for Jupiter and Saturn.

If you compare the annual solar sunspot number for
this period with the times for the syzygies of Jupiter and
Saturn, you find that the amplitude of a given solar cycle
depends on whether the syzygy is before or after that solar
maximum (Usoskin & Mursula 2003). Note that for a
given solar cycle, we are referring the syzygy that occurs
between two consecutive minimums. In the rare case
where there are two syzygies between consecutive solar
minimums (i.e. cycles −3, 6, and 14), we have chosen the
one closest to the maximum.

If the syzygy occurs after the solar maximum then the
strength of the solar maximum is normal. This is true for
cycles 2, 3 and 4 which appear in Figures 5a and 5b. How-
ever, if the syzygy occurs before the solar maximum then

3 World Data Centre for Sunspot Numbers, Belgium.

Figure 6 A comparison between the sunspot number at solar maxi-
mum (top curve) and the number of years that the syzygies of Jupiter
and Saturn are ahead of the time of solar maximum (bottom curve).
The sunspot numbers at solar maximum have been divided by 10 to
produce a comparable scale.

the amplitude of the solar maximum collapses. This is true
for cycles 5 and 6 which appear in Figures 5b and 5c.

Figure 6 shows that this phenomenon applies to all but
a couple of the sunspot cycles. In Figure 6, we plot the
Wolf Sunspot Number for the years of solar maximum
between 1700 and 2004 (Usoskin & Mursula 2003). We
also plot the number of years that each syzygy of Jupiter
and Saturn is ahead of the solar maximum4.

It is clear from a comparison of the two plots in Figure
6 that whenever the syzygies of Jupiter and Saturn occur
after solar maximum, the Wolf Sunspot Number at solar
maximum is above 80. And whenever the syzygies occur
before solar maximum, the Wolf Sunspot Number falls
below 80, i.e. when the driving force from the Jovian plan-
ets is in phase (or phase locked) with the solar cycle, then
the amplitude of the cycles are normal. However, if there
is a loss of phase locking (or phase drift), the amplitude
of the cycles collapses.

The exception to this rule occurs for the first solar cycle
following the reestablishment of phase lock. The peak
sunspot number for these ‘starter’ cycles remains below
80, despite the fact that phase lock has be reestablished.

This may simply mean that it takes at least one 11-yr
(Schwabe) solar cycle to reestablish normal phase-locked
solar activity. Note that Solar cycle −3 with a maximum
at 1718.2 is probably the first cycle following the reestab-
lishment of phase lock. There are two syzygies during this
cycle, one at 1713.4 and the other at 1723.1. The difference
in time between the times of syzygy and solar maximum
is only 0.1 yr. This difference is well within the margin of
error of the time measurements. Hence, it is possible that
the time difference between syzygy and solar maximum
might be +4.9 yr instead of −4.8 yr, as shown in Figure 6.

4 Usoskin & Mursula (2003) claim that there were solar maxima in the
years 1720.2 and 1729.0. However, the Wolf Sunspot Numbers for these
two cycles appear to peak at 1718.5 and 1727.0. Hence, for these cycles
we have used the years for solar maximum quoted by Jose (1965) i.e.
1718.2 and 1727.5.
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Figure 7 The peak sunspot number at solar maximum versus the
number of years that syzygies of Jupiter and Saturn are ahead of
or behind the times of solar maximum. The open diamond shaped
points represent the first solar cycles following the reestablishment
of phase lock.

A value of +4.9 yr would make this cycle fit the pattern
seen during the other two phase collapses.

Between the late 17th century and 2004, the ampli-
tude of the solar cycles has collapsed on three occasions
because of a loss of phase lock. These losses of phase lock
(or phase catastrophes) have occurred:

1. some time before cycle −4 (∼1680s?)
2. between cycles 4 and 5 in the early 1790s
3. between cycles 11 and 12 in the late 1870s

The amplitudes of the three cycles following each loss
of phase lock are significantly reduced e.g. cycles 5, 6 and
7 following the loss of lock in the early 1790s and cycles
12, 13 and 14 following the loss of lock in the late 1870s.

Another way to represent the data in Figure 6 is shown
in Figure 7. Here we plot the peak sunspot number at solar
maximum against the number of years that each syzygy of
Jupiter and Saturn is ahead of the time of solar maximum.
This plot clearly shows the two dominant modes of solar
activity, i.e. the phase-locked and phase-drift modes.

3.3 The Sun’s Equatorial Rotation Rate

While we have shown that the planetary induced torques
acting on the Sun appear to influence the strength of the
sunspot cycles, the evidence for this influence is indirect.
It would be much better if we could show that there is a
direct link between the regular decrease and then increase
in the Sun’s angular momentum about the CM of the Solar
System and changes in the Sun’s rotation rate. This would
confirm that there is a coupling between the orbital angular
momentum of the Solar System (primarily Jupiter’s) and
the spin angular momentum of the Sun.

In Section 2, we showed that the angular momentum
of the Sun about the CM of the Solar System sequentially
decreases, and then increases, between each opposition of
Jupiter and Saturn. We also showed that these changes in
angular momentum are in response to alternating toques
that are applied to the Sun by the successive quadratures
of Jupiter and Saturn (i.e. they produced by the quadrature
effect).

Figure 8 A plot of the moment arm of the torque for the quadrature
nearest the maximum for a given cycle against the change in the
average equatorial spin angular velocity of the Sun since the previous
solar cycle (measured in µrad s−1).

The question is, are there any systematic changes in the
Sun’s rotation rate in response to these changes in Sun’s
angular momentum about the CM?

One way to quantify the applied torques, is to use the
moment arm (about the CM) of the gravitational force
between the Sun and Jupiter, at the time of quadrature. Fig-
ure 8 shows the moment arm of the torque for the quadra-
ture nearest the maximum for a given cycle, plotted against
the change in the average equatorial (spin) angular veloc-
ity of the Sun since the previous solar cycle (measured in
µrad s−1). The equatorial (≤±15 deg) angular velocities
published by Javaraiah (2003) for cycles 12 to 23 have
been used to determine the changes in the Sun’s angular
velocity (since the previous cycle) for cycles 13 to 23.

Remarkably, Figure 8 shows that, whenever the Jovian
induced torque acting on the Sun decreases the Sun’s angu-
lar momentum about the CM, the Sun also experiences a
decrease in its equatorial rotation rate. In a similar man-
ner, whenever the Jovian induced torque increases the
Sun’s angular momentum about the CM, the Sun expe-
riences an increase in its equatorial rotation rate. The
only two exceptions to this rule are cycles 20 and 21,
although their deviations from the overall trend are within
the uncertainties of the observation.

Interestingly, Javaraiah (2003) noted that since 1879
the equatorial rotation rate of the Sun has been signifi-
cantly higher in the odd numbered solar cycles than the
even numbered solar cycles, i.e. the equatorial solar rota-
tion rate increases from even to odd solar cycles. This is
highlighted in Figure 8, where we have used symbols to
differentiate the five even numbered cycles from the six
odd cycles. Interpreting this phenomenon in light of our
quadrature model, we can see that it comes about simply
because the quadratures of Jupiter and Saturn closest to
the maxima of the odd number cycles have all been ones
which increase the Sun’s angular momentum about the
CM of the Solar System. In contrast, the quadratures clos-
est to the maxima of the even number cycles have all been
ones which decrease the Sun’s angular momentum about
the CM.

Thus, the relationship shown in Figure 8 is the ‘smok-
ing gun’ which provides us with a direct link between
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the planetary induced torques acting on the Sun and the
observed changes in the Sun’s equatorial rotation rate.

It is important to note, however, that while our data are
consistent with the idea that there is a spin–orbit coupling
between Jupiter and the Sun, it does not tell us anything
about the true nature of the underlying mechanism that
might be causing this coupling. However, we can use
our data to place some useful constraints upon possible
mechanisms.

A plausible spin–orbit coupling model must be able to
explain the following facts:

1. At the time of the quadrature nearest sunspot maximum,
if the Sun’s orbital angular momentum (about the CM)
decreases, then the Sun’s equatorial rotation rate (aver-
aged over the sunspot cycle) must also decrease when
compared to its average rate for the previous cycle.

2. At the time of the quadrature nearest sunspot maximum,
if the Sun’s orbital angular momentum (about the CM)
increases, then the Sun’s equatorial rotation rate (aver-
aged over the sunspot cycle) must also increase when
compared to its average rate for the previous cycle.

3. The spin–orbit coupling mechanism is synchronized
with the times of quadrature for Jupiter and Saturn.
This does not imply that the mechanism is a direct result
of the planetary quadratures, only that it must be inti-
mately related to the configuration of the two largest
Jovian planets.

4. Between successive oppositions of Jupiter and Sat-
urn, ∼3 to 5 × 1040 Nms of orbital angular momentum
(about the CM) is transferred back and forth between
Jupiter and the Sun. In addition, the data in Figure 8
indicates that the average change in the Sun’s equa-
torial angular velocity, from one cycle to the next,
is 0.0062 µrad s−1 (Javaraiah 2003). If the whole of
the Sun were to change its angular velocity by this
much, this would lead to a change in Sun’s rotational
angular momentum of 3.5 × 1038 Nms, when mea-
sured between successive sunspot cycles (Cox 2000).
This would mean that, over one Jupiter–Saturn synodic
period, 0.7–1.2% of the total orbital angular momen-
tum transferred back and forth between the Sun and
Jupiter would have to be subtracted from, and then
added to, the rotational angular momentum of the Sun.
Such an implausibly high percentage transfer would
suggest that it’s more likely that it is actually the outer
layers of the Sun’s convective zone, rather than the
Sun as a whole, that is affected by periodic changes
in rotational speed.

5. The solar convective zone (SCZ) contains roughly 2%
of the Sun’s total mass and it has an inner radius of
0.71 RO. If we were to represent the SCZ as a torus
with these mass and dimensions and we let it change
its angular velocity by 0.0062 µrad s−1, then it would
lead to a change in Sun’s spin angular momentum
of 4.5 × 1037 Nms, when measured between succes-
sive sunspot cycles (Cox 2000). This would require
that, over one Jupiter–Saturn synodic period, only

0.09–0.15% of the total orbital angular momentum
transferred back and forth between the Sun and Jupiter
would have to be subtracted from, and then added to, the
rotational angular momentum of the convective layers
of the Sun.

It is interesting to note that the average change
in the equatorial rotation rate between solar cycles of
0.0062 µrad s−1, corresponds to a change in speed at the
Sun’s equator of 4.3 m s−1. This is remarkable close to
the amplitude of the torsional oscillations seen on the sur-
face of the Sun of ∼6 m s−1 (0.0086 µrad s−1) observed
by Howe et al. (2000). This raises the intriguing possibility
that the torsional oscillations in the outer layers of the Sun
may be a product of the mechanism that is responsible for
the spin–orbit coupling between Jupiter and the Sun5.

4 Conclusions

Jose (1965) quantified the motion of the Sun about the
CM of the Solar System and showed that the time-rate
of change of the Sun’s angular momentum about the
instantaneous centre of curvature dP /dT varies in a quasi-
sinusoidal manner similar to the variations seen in the
solar sunspot number. In addition, he noted that the tem-
poral agreement between variations in dP /dT and the solar
sunspot number was so good that it strongly suggested a
connection between the planetary induced torques acting
on the Sun and sunspot activity.

In this paper, we have followed Jose (1965) lead and
looked for a possible links between the torques applied
to the Sun by the Jovian planets and the level of sunspot
activity. The evidence that we found to support such a link
was both direct and indirect.

4.1 Indirect Evidence for a Spin–Orbit Coupling

We performed a detailed comparison between the timing
of the syzygies of Jupiter and Saturn and the times of solar
maximum for all solar cycles since 1700. This compari-
son showed us that the peak amplitude of a given solar
cycle depends on whether the syzygy that is nearest in
time to solar maximum is before or after that maximum.
If the syzygy of Jupiter and Saturn nearest solar maxi-
mum occurs after solar maximum, the peak wolf sunspot
number at solar maximum is above 80. We find that the
Sun remains in this ‘normal’ state for extended periods
ranging from 55 to 115 yr. At the end of this extended
period of ‘normal’ activity, the solar cycle appears to suf-
fer a phase catastrophe, with the syzygy nearest the next
solar maximum occurring before that maximum. When
this happens, the peak amplitude of the sunspot cycle
collapses, falling below a peak wolf sunspot number of
80. The sunspot cycle remains in this collapsed state for
approximately one Hale cycle before returning its ‘normal’

5 Another interesting point is that the typical change in the Sun’s angu-
lar momentum about the CM from one syzygy to the next is ∼3 to
5 × 1040 Nms. This is virtually the same as the total rotational angular
momentum of the Sun’s convective zone which is ∼2 to 3 × 1040 Nms.
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state. We also note that when the ‘normal’ state is re-
established, the strength of the first Schwabe cycle remains
subdued.

This is exactly the type of behaviour you would expect
to see if there is a drifting phase locked resonance between
the 19.86-yr period of the planetary induced torques and
the 22.3-yr period for the level of sunspot activity.

In this model, when the syzygies of Jupiter and Saturn
occur after solar maximum, the planetary torques acting on
the Sun are in phase (or phase locked) with the solar cycle,
producing a peak Wolf sunspot number at solar maximum
that is ‘normal’. However, the difference in the length
of the synodic period of Jupiter and Saturn (19.86 yr)
and the length of the Hale Cycle (22.3 yr) ensures that
the resonance lock is broken once the two cycles drifted
out of phase with each other by half a synodic period
(∼9.9 yr). This would take ∼90 yr i.e. four Hale cycles
(4.0 × 22.3 = 89.2 yr) or four and a half synodic periods
(4.5 × 19.86 = 89.4 yr).

The breaking of the phase lock is marked by a phase
catastrophe.After this event, the syzygy of Jupiter and Sat-
urn nearest solar maximum occurs before the next solar
maximum. In this case, the planetary torque acting on the
Sun is out of phase with the solar cycle, resulting in a col-
lapse of the peak wolf sunspot number. Lose of phase lock
initiates a phase drift between the planetary driving mech-
anism and the sunspot cycle that continues until phase lock
is reestablished. The rate of phase drift between the two
cycles is enhanced by a significant increase in the length of
the collapsed sunspot cycles (∼2 yr) compared to the nor-
mal cycles. This leads to the reestablishment of phase-lock
after only one Hale Cycle.

Based on the premise that the period of the meridional
flow in the convective zone of the Sun determines the
length of the solar cycle, we propose that the mean period
for this flow (∼22.3 yr) is determined by a Synodic (phase
locked) ‘resonance’ between the flow period, the 178.7-yr
period of the planetary induced torques on the Sun and the
19.86-yr synodic period of Jupiter and Saturn. This is an
8:9 resonance, with eight Hale cycles equal to nine syn-
odic periods of Jupiter and Saturn equal to 178.8 yr (∼one
de Vries, or Suese, Cycle).

We propose that every 55 to 115 yr, the planetary driv-
ing mechanism for the solar cycle experiences a phase
catastrophe that subdues the level of solar activity for
roughly one Hale cycle. The timing of the phase catastro-
phe is a quasi-stochastic process that is loosely set by the
temporal phase difference between the length of the Hale
Cycle (∼22.3 yr) and the synodic period of Jupiter and Sat-
urn (19.86 yr). The quasi-stochastic nature in the timing of
the phase catastrophe comes about simply because neither
of the two interacting cycles has a fixed length. The length
of the solar sunspot cycle can vary from 8.7 to 12.7 yr
(Usoskin & Marsula 2003), while the length of the synodic
period of Jupiter and Saturn can vary between 18.9 and
20.6 yr. However, on average, we expect the phase catas-
trophes to reoccur roughly every 90 yr (∼ one Gleisberg
cycle).

4.2 Direct Evidence for a Spin–Orbit Coupling

From a study of the motion of the Sun about the CM of the
Solar System, we find that the torque acting on the Sun
about the CM starts out at zero at opposition, reaches a
minimum value at the first quadrature (when Saturn fol-
lows Jupiter), returns to zero at the following conjunction,
reaches a maximum at the second quadrature (when Sat-
urn precedes Jupiter) and then finally returns to zero when
the planets return to opposition. Variations in the torque of
this nature produces a strong breaking of the Sun’s orbital
motion about the CM near the time of first quadrature,
accompanied by a significant decrease in the Sun’s angu-
lar momentum. This is followed by a strong acceleration
of the Sun’s orbital motion about the CM near the time
of the second quadrature, accompanied by a comparable
increase in the Sun’s angular momentum.

Using data published by Javaraiah (2003) for the equa-
torial (≤±15 deg) spin rate of the Sun for sunspot cycles
12 to 23 (i.e. data from 1879 to 2002), we show that when-
ever the Jovian induced torque acting on the Sun decreases
the Sun’s angular momentum about the CM, the Sun also
experiences a decrease in its equatorial rotation rate. And,
whenever the Jovian induced torque increases the Sun’s
angular momentum about the CM, the Sun experiences an
increase in its equatorial rotation rate. This result provides
us with direct observational evidence that there is a spin–
orbit coupling between the orbital angular momentum of
Jupiter and the spin angular momentum of the Sun.

While our data is consistent with the idea that there is
a spin–orbit coupling between the Jupiter and the Sun, it
does not tell us the exact nature of the mechanism that
causes this coupling. However, we have used our data to
place some constraints on the possible spin–orbit coupling
mechanisms.

A plausible spin–orbit coupling model must be able to
explain the following:

1. At the time of the quadrature nearest sunspot maxi-
mum, if the Sun’s orbital angular momentum (about
the CM) decreases/increases, then the Sun’s equato-
rial rotation rate (averaged over the sunspot cycle)
decreases/increases, when compared to its average rate
for the previous cycle.

2. The spin–orbit coupling mechanism is synchronized
with the times of quadrature for Jupiter and Saturn.

3. If the whole of the Sun partakes in the observed periodic
changes in the equatorial rotation rate, then over one
Jupiter–Saturn synodic period, 0.7–1.2% of the total
orbital angular momentum transferred back and forth
between the Sun and Jupiter would have to be sub-
tracted from, and then added to, the rotational angular
momentum of the Sun.

4. If, as is more likely, it is actually the outer 2% of the
Sun’s mass, rather than the Sun as a whole, that are
affected, then over one Jupiter–Saturn synodic period,
approximately 0.09–0.15% of the total orbital angu-
lar momentum transferred back and forth between the
Sun and Jupiter would have to be subtracted from, and
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then added to, the rotational angular momentum of the
surface layers of the Sun.

We also found that the average change in the Sun’s
equatorial rotation speed is 4.3 m s−1. This is remarkable
close to the velocity amplitude of the torsional oscilla-
tions seen on the surface layers of the Sun. Thus, it raises
the possibility that the torsional oscillations seen in the
outer layers of the Sun may be a product of the spin–orbit
coupling between Jupiter and the Sun.

4.3 Important Consequences of the Resonance Model

Interestingly, the Sun’s solar cycle has been in the phase
locked mode for the last 105 yr (1900–2005) and the
indications are that it is about to suffer another phase catas-
trophe in the later part of cycle 24 (i.e. the solar cycle
that will peak in ∼2011–2012). If this is the case, then
we should expect that in the two decades following the
phase catastrophe, the world’s mean temperature should
be noticeably cooler i.e. the cooling should start in the late
2010s. This claim is based on the precedent that there were
noticeable decreases in the world’s mean temperature fol-
lowing the last two phase catastrophes. The cool period
know as the Dalton Minimum (1800–1820) that followed
the phase catastrophe in the early 1790s and a similar cool
period called the Victorian Minimum (1880–1900) that
followed the phase catastrophe in the late 1870s.

Finally, another important consequence the synodic
(phase locked) resonance model is that that any solar type
main sequence stars that exhibits solar cycles similar to the
Sun must have at least two Jovian planets orbiting the star,

such that their synodic period is comparable to the star’s
solar cycle length. This opens up the possibility that long
term HK observations of magnetic activity in solar type
stars could be used as an effective method for detecting
Jovian planets orbiting these stars.
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