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Abstract: Two new algorithms are described for matching two dimensional coordinate lists of point sources
that are significantly faster than previous methods. By matching rarely occurring triangles (or more complex
shapes) in the two lists, and by ordering searches by decreasing probability of success, it is demonstrated
that very few candidates need be considered to find a successful match. Moreover, by immediately testing
the suitability of a potential match using an efficient mechanism, the need to process the entire candidate
set is avoided, yielding considerable performance improvements. Triangles are described by a cosine metric
that reduces the density of triangle space, permitting efficient searches. An alternative shape characterization
method that reduces computational overhead in the construction phase is discussed. The algorithms are tested
on a set of 10 063 wide-field survey images, with fields-of-view up to 4.8◦ × 3.6◦, successfully matching
100% of the images in a mean elapsed time of 6 ms (2.4 GHz Athlon CPU). The elapsed time of the searching
phase is shown to vary by less than 1 ms for list sizes between 10 and 200 points, demonstrating that fast,
robust searches may be completed in nearly constant time, independent of list size.
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1 Introduction

In the course of carrying out a wide-field CCD imaging
survey, two new methods for correlating the images to star
catalogues have been developed, motivated by the need
to efficiently handle the large number of stellar sources
present on the images. Most previously published algo-
rithms successfully cater for small lists (≤50 stars), but
do not scale well to wide-fields containing 103 or more
stellar sources.

The problem of matching coordinate lists of point
sources is a necessary prerequisite for deriving an astro-
metric plate solution. The objective is to match a subset of
stars found on an image to their corresponding entries in a
stellar catalogue in order to determine the transformation
between detector coordinates and sky coordinates. The
algorithm must handle translation and rotation, and small
changes in scale caused by temperature related changes
in focal length. In addition, it must cope with additional
and missing stars. That is, the two lists may only partially
overlap.

The efficiency of the algorithm is of paramount con-
cern, since it is embodied within the closed-loop pointing
system of the telescope and therefore affects the duty-
cycle time, and ultimately constrains the number of images
that can be acquired each night. Surveys that require very
high photometric precision typically seek to accurately
align their fields on the same detector pixels each night to
overcome residual flat-fielding errors (Everett & Howell
2001), and would benefit from the efficiency gains
of a fast matching algorithm. Similarly, high cadence

surveys, such as the Southern Sky Survey (Keller et al.
2007) could improve precision and reduce its duty-cycle
by utilizing a fast closed-loop pointing algorithm. More-
over, real-time attitude adjustments on spacecraft might
be possible with the aid of an efficient matching algorithm
to analyze on-board star camera images (see for example
Fraser 2003).

A number of algorithms have been proposed to solve
this problem. Groth (1986) describes an algorithm that
matches geometrically similar shapes (triangles) in the
two lists. By limiting the number of triangles con-
structed, and by only matching those triangles whose
ratio of longest to shortest side are within a defined limit,
his matching phase has a computational complexity of
O(n4.5) where n is the number of stars in each list. Stet-
son (1990) describes a very similar algorithm that he
developed independently at around the same time.

Murtagh (1992) reviews a number of approaches and
proposes his own, based upon characterization of a set of
coordinates couples, with matching based on the prox-
imity of feature vectors in the two lists. His method’s
matching phase has a computational complexity of O(n2).

Nevertheless, Groth’s algorithm appears to be the most
widely accepted, with the methods applied across disci-
plines. For example, Arzoumanian, Holmberg & Norman
(2005) discuss its application to the problem of computer-
aided identification of whale sharks, while Marszałek &
Rokita (2004), building upon the work of Groth (1986),
describe an optimization to the voting phase of the algo-
rithm, concluding that their method reduces the need for
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complicated filtering methods while successfully reducing
the number of false matches.

More recently, Pál & Bakos (2006) describe another
variation of triangle matching, optimized to handle large
lists of objects extracted from wide field images. Large
fields contain thousands of stars and pose a severe test
for matching algorithms, requiring efficient methods to
accommodate the large number of point sources.

The following sections discuss two new methods for
pattern matching that have a matching phase with a com-
plexity that is nearly O(1), at the cost of a slight loss
in generality. They are collectively referred to as Opti-
mistic Pattern Matching (OPM) because they assume that
(i) a good match is likely to be found, and (ii) the scale
of the image is approximately known, thus permitting
the use of an early exit strategy whereby only a small
percentage of the candidate list is examined. By con-
trast, previous methods assumed an unknown scale which
required the entire candidate list to be processed to deter-
mine the most likely match using a statistical approach.
This required additional phases and complexity. In prac-
tice, an a priori knowledge of an instrument’s focal length
is common place, and the use of a more general algo-
rithm that assumes it is unknown mandates strategies that
unnecessarily degrade performance.

Section 2 describes the algorithms in detail. OPMA

is based upon a new definition of triangle space, while
OPMB uses an alternative shape characterization method.
Section 3 tests their performance using a large sample
of survey images and compares them to earlier methods.
Conclusions are summarized in Section 4.

2 Algorithms

The OPM algorithm has some similarity to previous algo-
rithms in that it attempts to match triangles in the two lists.
However, it differs fundamentally by searching for rarely
occurring triangles that are unique (or nearly so) to the
field. By ordering the triangles by their estimated selec-
tivity, and by testing the rarest shapes first, a correct match
in usually identified extremely quickly. Thus, only a small
fraction of the candidate list must be searched, allowing
the search process to terminate early.

2.1 List Creation

The image for which a transformation is to be derived is
first processed by a stellar detection routine to construct
a list of sources ordered by descending magnitude. Each
star is assigned an approximate instrumental magnitude
estimated from the (non-sky subtracted) signal contained
within the pixels attributed to the star. By assuming a uni-
form sky background and ignoring the effects of partial
pixels, the method is computationally efficient in deriving
an estimate of the relative intensity of the stellar sources
found on the image. The brightest n stars are selected
from the list to form the image star list, denoted as I.
The approximate equatorial coordinates of the field cen-
ter are retrieved from the image header, together with the
approximate focal length of the optics and the detector’s

a � |CB|

c � |AB|
b � |CA|
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Figure 1 OPMA nomenclature.

physical dimensions, allowing the field of view (FOV) to
be estimated. Using these quantities, the Hubble Guide
Star catalogue (Lasker et al. 1990) is read to extract a list
of the n brightest catalogue stars within the field. This list
of reference stars is denoted by R.

The n brightest stars from each list are selected with
the expectation that most will have a corresponding entry
in the other list. However, experience shows that not all I
will have a corresponding match in R. Some uncertainty
in the field center and, more importantly, differences in the
passbands of the detector and catalogue results in different
stars being selected. Increasing the size of R increases the
probability that more I will be matched, at the expense
of a longer triangle construction phase. Unlike previous
methods, increasing list sizes does not adversely affect
OPM’s matching performance in any significant way. It
must be emphasized that only three stars common to both
lists are necessary in order to find a successful match, but
increasing n increases the chance of an unusually shaped
triangle being formed, which facilitates an early exit from
the matching phase.

2.2 OPMA

2.2.1 Triangle Construction

Triangles are constructed from the stars in both lists.
Each set of three stars (triplet) may be matched in 6 dif-
ferent ways with a triplet from the other list. Using an
optimization introduced by Groth (1986), the number of
candidates is reduced by a factor of 6 by assigning the ver-
tices of the triangle such that vertices A and B define the
shortest side, B and C the longest side, and A and C define
the intermediate length side (see Figure 1). This scheme
generates

T = n(n − 1)(n − 2)/6 (1)

unique triangles (T ) from a list of n points. Next, we
wish to assign some metrics to each triangle to describe
its properties. Groth (1986) used the ratio of the longest
to the shortest side and the cosine of the angle at ver-
tex B to define its position in a two-dimensional triangle
space. Valdes et al. (1995) used the ratios of two sides,
(b/a, c/a) where a, b and c are the side lengths in
decreasing order, to define its location in triangle space.
Pál & Bakos (2006) defined a more elaborate scheme
based on the side lengths and some auxiliary quantities.
Although more computationally complex, their definition
preserves chirality and maps triangles using a continuous
function, cleverly avoiding discontinuities where small
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Figure 2 OPMA triangle space.

measurement errors may result in triangles being mapped
to different parts of triangle space.

The OPMA algorithm defines triangle space as (xt, yt),
where

xt = −→
CB · −→

CA, yt = a

c
(2)

with
−→
CB and

−→
CA being the vectors from vertex C to B,

and C to A respectively, and a/c is the ratio of the length
of the longest to the shortest side (Figure 1).

A dot product, or cosine metric, is commonly used in
text-based matching applications to compare the similarity
of strings (see for example Rawat et al. 2004). It has a
number of useful properties, being stable under translation
and rotation, and is computationally efficient to calculate
using the relation:

�X · �Y = | �X||�Y | cos θ =
∑

i

xiyi. (3)

However, its primary advantage over the other repre-
sentations is that it provides a scalar value that is a function
of the lengths of the two vectors and the angle between
them. Therefore, it is useful in discriminating between the
set of triangles that share the same side length ratios, but
with different perimeters. Such triangles map to the same
location in triangle space when using the definition of
Groth (1986) or Valdes et al. (1995), requiring additional
algorithmic complexity to separate the false matches that
they produce.

OPM triangle space is sparse compared to that of
Valdes et al. (1995), who compressed all triangles into
the range (0 < xt ≤ 1, 0 < yt ≤ 1), and Pál & Bakos (2006)
who used a domain of (−1 < xt < 1, −1 < yt < 1). Groth
(1986) used a cosine of one of the angles, restricting
0 ≤ xt ≤ 1, and arbitrarily constrained yt ≤ 10. OPM’s def-
inition permits an unconstrained range of values, thereby
lowering the density (points per unit area) of triangle
space, thus reducing the probability of misidentification.

Figure 2 plots OPMA triangle space for a representa-
tive image. Triangles formed from I and R are plotted

using red pluses and green crosses respectively. A value
of n = 25 was used, resulting in 2300 triangles in each list.
Two interesting features are immediately apparent. Firstly,
the vast majority of triangles occur near the origin of the
plot, where the density of points is greatest. Searches con-
ducted in this region are very expensive due to the large
number of candidates that must be considered. Secondly,
a number of curving rows emanating from the origin and
reaching up to large values of xt , and/or yt are visible.

Each curve represents the set of triangles formed by a
close pair of stars with a third more distant one. As the
distance to the third star increases, the lengths of the two
longest sides increase and the angle at vertex C becomes
more acute, resulting in larger dot product. Similarly, the
ratio of the longest to the shortest side increases.A key fea-
ture is that these curving rows are rather distinct, with the
points furthest from the origin having very few neighbors.
Processing the outlying points is very cost-effective due
to the low number of candidates that must be considered.

The plot also shows the I / R pairings that were verified
to be correct (blue pluses). Obviously, a few rows of image
stars have no analogue extracted from the catalogue. This
was caused by differences in relative magnitude of the
stars in the two lists, due primarily to passband disparities.
Similarly, someRhave no matchingI for the same reason.
As expected, increasing the size of the R list (to 55 in this
case) results in matches for all I.

Triangle construction has a computational complexity
of O(n3). However, by implementing an optimization pro-
posed by Valdes et al. (1995), that avoids calculating the
same side length multiple times, the number of length
calculations has been reduced from ∼T 3 to ∼T 2, with a
proportional decrease in elapsed time.

2.2.2 Matching Triangles

Searching for matching triangles in triangle space is a
combinatorial problem. In principle, all triangles gener-
ated from I and R lists must be compared. A match is
deemed to occur when a point in I triangle space is found
to be within a certain tolerance ε of a point in R triangle
space.

A brute force method that compares each triplet of I
stars to the entire list of R triplets is an expensive opera-
tion of O(n6). However, by sorting the R triangles by yt

and using a binary search to find the starting point within
the list, a large number of comparisons may be avoided.
Only the points falling within yt ± ε need be compared.
The choice of limiting searches using yt instead of xt is
important, since it minimizes the number of candidates
that fall within yt ± ε, particularly when yt is large. The
values in each coordinate are compared and a match is
declared when they are within 2%, the tolerance having
been determined empirically from test data.

2.2.3 Early-Exit Strategy

The OPMA definition of triangle space ensures that
triangles formed by two close vertices and a third more
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distant vertex map to sparse regions in triangle space, far
from the densest areas occupied by triangles with similar
side lengths. This property is exploited by searching the
lowest density regions first, in the hope that a match will
be found very quickly, allowing the process to terminate
before the higher density areas must be considered. Each I
triangle is assigned a score defined as the product of xt and
yt , and the list is sorted into descending order of score. Pro-
cessing triangles in this order ensures that the relatively
rare (highly selective) triangles are matched first. Com-
parisons are inexpensive, because there are few similar R
candidates, and the few candidates that are within range
are likely to be true matches.

2.2.4 Checking a Match

All potential matches require verification, since false
matches will always be present. Voting (Groth 1986;
Valdes et al. 1995; Pál & Bakos 2006) makes use of an
array to tally the number of times each pair of stars is
involved in a potential match. This is a time consuming
operation, since it requires all candidate triangles to be
processed to allow each one an opportunity to vote. The
likely matches are then selected on the basis of probabil-
ity — from the pairs that received the highest number of
votes.

By contrast, OPM assumes that highly selective trian-
gles are likely to yield a true match, and if confirmed, the
search can be immediately terminated. Therefore, when
a potential match is found, the algorithm immediately
attempts to verify the relationship using a light-weight
(inexpensive) process. If unsuccessful, OPM continues
processing more candidates, having expended little effort
in screening out the false match. When the preliminary
verification is positive, a more robust and relatively expen-
sive verification process is used to comprehensively test
the suitability of the match. It is assumed that this process
will be executed very few times, most likely only once.

2.2.5 Preliminary Verification

The preliminary verification (PV) process determines
the transformation from image to sky coordinates using
an astrometric plate solution. It commences with the cal-
culation of standard coordinates (ξ, η), representing the
gnomonic projection of the spherical sky onto the plane
of the detector, using the relations

ξ = cos δ sin(α − A)

sin D sin δ + cos D cos δ cos(α − a)
(4)

η = sin D cos δ cos(α − A) − cos D sin δ

sin D sin δ + cos D cos δ cos(α − a)
, (5)

where (α, δ) represent the equatorial coordinates of the
catalogue stars and (A, D) is the origin of the coordinates,
which is usually taken as the approximate plate center. The
standard coordinates are related to the measured coordi-
nates (x, y) of the centroids of the stars on the image using

the following relations:

ξ − x

L
= ax + by + c (6)

η − y

L
= a′x + b′y + c′, (7)

where a, b, c, a′, b′, c′ are the plate constants that describe
the translation and rotation necessary to transform
between the two coordinate systems, and L is the focal
length of the optics, expressed in the same units as x and y

(Marsden 1982).
The candidate triangle relates three points on the image

to three in the reference catalogue, and allows us to write
six equations to solve the six unknown plate constants.
As a check, we note that a ∼ b′ and b ∼ −a′ (Edberg
1983), assuming that the axes are perpendicular and have
the same scale, which should be the case if correct pair-
ings have been selected. If the plate constants differ by
more than 2.5%, a value determined empirically from test
images, the candidate pairing is rejected.

2.2.6 Final Verification

If the solution appears to be reasonable, a more robust
final verification (FV) check is performed. Using the initial
plate solution, all I are transformed to equatorial coordi-
nates and compared to the entire list of R to find their
closest match. An important optimization speeds up this
step by avoiding the need to compare all entries. An auxil-
iary array, containing the indexes into the R array, was
prepared when the R list was built initially. The aux-
iliary array was sorted by declination, allowing the R
array to remain sorted by magnitude. Using the auxiliary
array, a binary search is performed to locate the starting
point within R where comparisons should commence. The
equatorial coordinates of each transformed I are com-
pared to the catalogue coordinates of all R that are within
ε arcsec. A tolerance of 3σ is used, where σ is the typical
astrometric residual of a full plate solution at this image
scale, thus allowing for uncertainties in the initial transfor-
mation which is based upon only three stars, two of which
are closely separated.

A small angular separation approximation (Meeus
1991) is used to estimate the separation of each pair of
stars:

s2 = (�α cos δ)2 + (�δ)2, (8)

where s is the separation in degrees, �α is their separa-
tion in R.A., �δ is their separation in declination, and δ

is the declination of the target I (with cos δ calculated
once outside the main loop). The approximation avoids
using transcendental functions, which are computationally
expensive relative to ordinary floating point operations
(addition, multiplication, division). Errors resulting from
the approximation are absorbed by the relatively large
value of ε. The squared separation, s2, is compared to ε2

to avoid a costly sqrt operation.
Since the I array is sorted by relative magnitude, the

brightest stars are compared first. If multiple R are found
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Figure 3 OPMB constructs shapes of arbitrary complexity using
a user-defined number of points.

within the matching tolerance, the brightest, unassigned R
is used as the match. This is determined by simply saving
the lowest R index when a match occurs. Since the R array
is sorted by descending magnitude, the saved index rep-
resents the brightest R star. Once an assignment is made,
the particular R is flagged to avoid matching it again. This
scheme ensures that the brightest I are matched to the
brightest R when there are multiple candidates within the
matching tolerance, mimicking the decision that a human
operator would have made.

After all assignments have been completed, a new astro-
metric solution is calculated using all assigned pairs. The
process iterates three times (this number is user control-
lable), successively refining the solution at each iteration
as more stars are matched. At the end of the process, the
final number of matched stars is compared to a prede-
fined limit. If sufficient stars have been identified, the
match is deemed to be correct and the search process ter-
minates. In the unlikely event that insufficient stars have
been identified, the search process continues with the next
candidate.

2.3 OPMB

An alternative algorithm, named OPMB, was developed
several years ago. I have since learned that it bears some
similarity to that described by Murtagh (1992). Neverthe-
less, my approach has some major differences, principally
in its use of an early exit strategy and just-in-time approach
that avoids calculating quantities until they are required.
By postponing various calculations, computational effort
is saved in the hope that an early exit will render them
unnecessary.

OPMA is dominated by triangle construction costs, par-
ticularly for large n. OPMB addresses this problem by
reducing the number of shapes to be characterized. It also
uses a more restrictive shape definition, which reduces
the number of false positives that may occur and results
in a successful match being found in nearly constant time,
independent of n. Instead of matching triangles, an arbi-
trarily complex geometric shape, made up of a user defined
number of points is used (Figure 3). The shape to be
matched is characterized by the relationship of the central
star (A) with respect to the other stars (B, C, D, . . .), using
their separations and position angles (PA) relative to starA.

Angles are measured relative to north (defined as the −y

direction as seen from star A), although this is arbitrary.
This definition is similar to that used by Murtagh

(1992), although his world view describes the relation-
ship of every star to its n − 1 neighbors, requiring O(n2)

calculations to describe all points. Furthermore, his world
view is calculated for both the I and R lists, with the
matching process comparing all members of both sets to
find a high confidence match, with a resulting computa-
tional complexity of O(n2). Another point of difference is
that Murtagh bins the position-angles into 1◦ increments
in order to accommodate rotation of the coordinate sys-
tems, with his matching phase requiring the comparison of
the world view of set A to 360 versions of set B. Although
OPMB uses a superficially similar shape characterization,
the algorithms are quite different.

In principle, increasing the number of stars used to
define the shape adds greater constraints and therefore
reduces the number of false matches that may occur. It
also allows more points to be used in the initial astromet-
ric solution, leading to a more accurate transformation.
In practice, using three stars is sufficient because the
matching phase is very efficient relative to the shape char-
acterization phase (analogous to triangle construction).
The latter dominates the elapsed time of the search, even
when false positives are present.

OPMB processing commences with the lists of the n

brightest I and R, as described in Section 2.1.A sorted list
of separations and PAs for each pair of stars in the R list
is constructed. The number of unique pairs, P , is given by

P = n(n − 1)/2. (9)

This immediately provides an improvement over OPMA,
where two lists of triplets must be prepared instead of one
list of pairs (P � T ).

The search process commences with the selection of the
m brightest I, where m is the number of stars used to define
the shape to be matched. Each star in the candidate list is
assigned a letter, A being the first, B the second, and so on.
The separation and PA of each pair, AB, AC, AD, . . . are
calculated. The separations are computed from the focal
length of the optical system and physical dimensions of
the detector. The PA is calculated relative to the top of the
detector, since the absolute rotation relative to the celes-
tial sphere is unknown at this stage. Postponing the same
calculations for I to the search phase avoids the effort of
pre-calculating the entire list when only a few values may
be required, as is the case when an early exit occurs. This
just-in-time approach results in a considerable saving in
computational effort.

The search process attempts to find a match for AB
in the list of R pairs. A binary search is used to quickly
identify those pairs with separations within the matching
tolerance ε. The difference in PA between the image and
reference pairs is assumed to be due to rotation of the
detector. The R list is now searched to find candidates
for AC, AD, etc. using a binary search on separation and
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Table 1. Test images

f (mm) Number Detector FOV (deg)

102 2498 ST-6 4.8 × 3.6
135 211 ST-6 3.6 × 2.8
180A 3943 ST-8XE 2.9 × 1.9
180 1234 ST-8XE 4.4 × 2.9
188 1102 ST-8XE 4.2 × 2.8
200 1075 ST-8XE 4.0 × 2.6

ASub-frame.

a knowledge of the rotational offset defined by AB with
respect to the catalogue value. Candidate pairs with a rota-
tional offset >1◦ are rejected. A possible optimization,
though not implemented, could reject candidate pairings
not matching the absolute orientation of the detector with
respect to the sky (when known), thus avoiding the need
to determine the rotational offset and permitting incorrect
pairs to be rejected immediately.

Once m candidates have been identified, the prelimi-
nary verification function is called (see section 2.2.5). The
m pairings are used to determine an initial astrometric
solution which, if acceptable, may result in the final veri-
fication process being called. If the solution is rejected, or
insufficient candidates are identified, the next candidate
within the matching tolerance is selected and the process
continues. If the current candidate list cannot be matched,
the search process begins again by selecting another set
of candidate stars. The process repeats until a successful
match is found, or the entire list of candidates is exhausted,
in which case we declare that a match could not be found.

3 Performance

It is not possible to analytically determine the order of
complexity of these algorithms because they do not per-
form a fixed number of searches. In the best case, a
successful match may be found after processing just one
candidate. In the worst case, the entire list of candidates
may have to be searched.

In order to investigate whether there is any cause for
optimism, that is, whether an early match will occur in
practice with real data, 10 063 unfiltered, wide-field sur-
vey images acquired with a variety of SBIG detectors and
focal-lengths were analyzed. Table 1 lists their character-
istics, with the columns describing the focal-length (f ),
number of images, CCD detector, and effective FOV of
each set of images. Although this sample of test images
was acquired with SBIG detectors, the algorithms are
generic in nature and apply equally to all CCD detectors.

Fields were selected from an all-sky survey conducted
from a latitude of 35◦S. The deepest, widest fields,
located near the galactic equator, contained ∼3 × 104

stellar sources to mV ∼15. Images containing moder-
ate defects such as blooming spikes, satellite trails, and
thin cirrus were retained in the sample. Images that were
heavily obscured by cloud were discarded. In order to

Table 2. OPMA performance

n Total elapsed Construct Match Match
(ms) (ms) (ms) (%)

10 3.99 ± 0.71 0.23 ± 0.01 3.34 ± 0.67 90.55
20 6.16 ± 1.02 2.13 ± 0.14 3.53 ± 1.00 99.92
30 12.14 ± 1.75 7.83 ± 0.19 3.60 ± 1.74 100.00
40 24.43 ± 1.36 19.74 ± 0.51 3.61 ± 1.26 100.00
50 46.11 ± 1.60 40.72 ± 0.79 3.75 ± 1.38 100.00
60 79.63 ± 2.16 73.20 ± 0.92 3.96 ± 1.97 100.00
70 128.02 ± 3.49 120.14 ± 1.38 4.30 ± 3.24 100.00
80 194.07 ± 4.72 184.33 ± 2.85 4.66 ± 3.77 100.00
90 280.84 ± 6.25 268.64 ± 3.73 5.25 ± 5.04 100.00
100 391.28 ± 7.84 376.01 ± 4.00 6.00 ± 6.80 100.00

Table 3. OPMB performance

n Total elapsed Construct Match Match
(ms) (ms) (ms) (%)

10 3.56 ± 0.35 0.14 ± 0.03 3.32 ± 0.32 87.24
20 4.09 ± 0.51 0.57 ± 0.03 3.42 ± 0.51 99.54
30 5.04 ± 1.06 1.35 ± 0.05 3.58 ± 1.06 99.97
40 6.39 ± 1.91 2.53 ± 0.16 3.75 ± 1.90 100.00
50 8.19 ± 2.88 4.17 ± 0.13 3.91 ± 2.87 100.00
75 15.41 ± 4.45 11.19 ± 0.28 4.11 ± 4.43 100.00
100 29.09 ± 5.12 24.75 ± 0.59 4.22 ± 5.06 100.00
150 111.17 ± 7.69 106.46 ± 2.71 4.56 ± 7.18 100.00
200 360.06 ± 12.69 354.98 ± 8.86 4.91 ± 9.10 100.00

test algorithmic robustness under a variety of conditions,
approximately 40% of the images were taken from a
photometric survey of bright stars that were strongly
defocused to avoid saturation.

Elapsed times were measured with the Pentium per-
formance counter (RDTSC instruction), that reports the
number of clock cycles that have occurred since the CPU
was powered up. Despite its high resolution, precision is
limited by unavoidable context switches within the operat-
ing system. It is assumed that this effect has been averaged
out over the timescale of the test and that each test was
affected equally.

Separate timers were used to measure the performance
of each of the following phases: triangle (pair) con-
struction, sorting, searching for candidates, preliminary
verification, and final verification. In the following discus-
sion, the term matching refers to the combined efforts of
searching, preliminary verification and final verification.
Although other algorithms do not consider calculation of
the transformation (as performed by final verification) to
be part of the matching process, it is necessary to include
this for OPM, since we must be certain that an early exit
is warranted. To avoid unfairly penalizing search perfor-
mance, final verification was configured to use a maximum
100 image stars.

Results for the two algorithms are summarized in
Tables 2 and 3, with the columns describing list size (n),
total elapsed time, elapsed time for the triangle (pair)
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Figure 5 OPMA matching phase only.

construction phase, elapsed time for the matching phase,
and the percentage of images successfully matched. Fig-
ures 4 and 6 plot the relative construction and matching
costs. Figures 5 and 7 show a break-down of the matching
phase for each algorithm. Note that the plots use the same
vertical scale for easy comparison, and that the abscissa
for the OPMB plots extend to n = 200.

3.1 OPMA Performance

The following performance characteristics are observed:
All values of n ≥ 30 resulted in a 100% match rate.
Large lists were unnecessary and were in fact detrimental,
increasing triangle generation times. Even a small value
of n = 30 was sufficient to generate a number of highly
selective triangles allowing a match to be found quickly.
Values less than 30 did not succeed in matching all images,
although somewhat surprisingly, even at n = 10, over 90%
of the images were matched successfully.

Figure 4 plots the cost of the matching phase relative
to triangle construction. At small n, triangle construction
costs are negligible and matching dominates (with the
majority apportioned to the final verification phase). As
n increases, the triangle construction time quickly starts
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Figure 6 OPMB pair construction and matching phases.
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Figure 7 OPMB matching phase only.

to dominate matching costs, the latter being nearly con-
stant. That triangle construction dominated the total time
is in complete contrast to the performance statistics pub-
lished by Groth (1986) and Marszałek & Rokita (2004),
where triangle construction was the fast operation and
matching dominated. Realizing that triangle construction
costs should be similar for all equally optimized algo-
rithms further highlights the effectiveness of the early exit
strategy.

The elapsed time in the search and preliminary ver-
ification phases is small relative to final verification,
confirming that they are suitably light (Figure 5). The
cost of final verification could be further reduced by lim-
iting the number of iterations that are performed (3 by
default). One could conceivably stop iterating once a suf-
ficient number of stars have been identified, although this
optimization was not implemented.

There is very little scatter in total elapsed time, con-
firming that fast matches, leading to early exits, occur
consistently. The median number of candidates processed
from the I triangle list is very small is absolute terms.
Less than 1.5% of T were examined for n = 20, reducing
to 0.05% of T for n = 100.
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A value of n = 30 appears to be optimal; large enough
to produce reliable results and small enough to limit trian-
gle construction and matching costs. While it is impressive
that the entire process can be completed successfully in
≈12 ms, it is equally remarkable that the cost of search-
ing a much larger list (n = 100) is not prohibitive. This
is possible because only a small subset of the triangles is
searched instead of processing all combinations. Never-
theless, large lists offer no practical advantage, particularly
when smaller lists are completely reliable.

3.2 OPMB Performance

OPMB tests were conducted withm = 3 in order to directly
compare the performance to OPMA. It was found that
absolute search performance was faster than OPMA. For
small values of n, both algorithms provide similar perfor-
mance, due to the relatively large cost of final verification.
At n = 30, OPMB is twice as fast as OPMA, due primarily
to savings in the construction phase. By n = 100, OPMB

is an order of magnitude faster than OPMA.
Matching time increased by just 1.6 ms as list size

increased from 10 to 200 points. This is attributable to
the fact that very few candidates were examined to find a
successful match, even for large lists. For n = 100, 60%
of searches were solved using the first candidate list and
90% of searches were completed by testing ≤10 candidate
lists.

Figure 7 plots the time spent in the sub-phases of match-
ing as a function of n. The search time increased by <1 ms
between 10 ≤ n ≤ 200, and PV costs were insignificant,
due to the use of PA in shape characterization, which
removes candidates with incorrect chirality. Final veri-
fication accounted for the majority of the time. I expect
that further optimizations in the final verification phase
might reasonably yield matching times of approximately
1–2 ms.

Figure 8 plots the total elapsed time of the search as
a function of n, for both OPMA and OPMB. Also shown
is the time spent in each matching phase, highlighting the
nearly constant matching time of OPMB.

3.3 Relative Performance

A number of authors have provided indicative perfor-
mance measurements for their respective implementa-
tions. Unfortunately, absolute timings are difficult to
compare because they are quoted for different values of
n, statistics are not provided for all phases, and differ-
ences in machine architecture and processor speed play
a significant role in determining the overall performance.
Nevertheless, it is possible to make some general obser-
vations by comparing recent results produced on a similar
CPU.

Most recently, Pál & Bakos (2006) demonstrated
a mean elapsed time of ∼100 ms to process a full-
triangulation of 35 sources using their grmatch task, which
implements a voting algorithm (2.0 GHz 64-bit AMD
Opteron CPU). The time quoted for grmatch excluded
iterative calculation and refinement of the transformation
coefficients. Table 3 shows that OPMB completes the same
task in ∼6 ms, including the extra work of final verifica-
tion. Even allowing for an ∼20% difference in processor
speed, it is clear that early exits are extremely beneficial,
with the performance differential expected to widen as n

increases.

3.4 Ill-Conditioned Searches

The preceding tests were performed on wide-field images
where pointing errors were small relative to the size of the
FOV. Thus, there was nearly a 100% overlap between I
and R. We now consider the performance of OPMB under
non-optimal conditions.

Figure 9 plots the match rate and elapsed time of 10 063
searches (n = 100) when the brightest stars have been
omitted from I, as might be the case if they were satu-
rated or a significant passband disparity exists. A 100%
match rate was maintained even when skipping 20% of
I, dropping slightly to 99.7% at 30% of I. The elapsed
time was only marginally affected for values up to 30%,
but did increase markedly when a significant fraction of
stars were skipped because the mismatched lists reduced
the likelihood of an early exit being taken. Nevertheless,
skipping (an unrealistic) 30% of stars did not significantly
affect reliability or performance.

Figure 10 plots OPMB performance for partially over-
lapping fields. Scenarios where I and R are not aligned are
more typical of narrow-field images, where pointing errors
may be a significant fraction of the FOV. Curves are plotted
for two values of n. A value of n = 100 was slightly more
reliable than n = 40, but the latter performed far better as
the degree of overlap decreased. Under these conditions,
smaller values of n are favored to avoid long search times
when the chance of finding a successful match is small. If
the coordinates of the field center are unknown, an iterative
(perhaps spiral) search should use a small n to reduce the
elapsed time of any unsuccessful (exhaustive) searches.

Extremely narrow fields of view were simulated by
conducting tests using very few I stars. Figure 11 plots
reliability and performance when constraining 3 ≤ I ≤ 10.
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Figure 9 OPMB reliability and performance when skipping the
brightest I stars.
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Figure 10 OPMB reliability and performance for partially over-
lapped fields.
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Figure 11 OPMB reliability and performance for fields containing
very few stars (3 ≤ I ≤ 10 and R = 50).

Only the well-focused subset of 6120 images was used,
so that spurious stellar detections from blended, defocused
objects would not be included within I, which would oth-
erwise skew results. The size of the reference list was set to
R= 50 to reduce the chance of passband disparities pro-
ducing non-overlapping lists, which is more likely when

both I and R are small. The plot shows that as few as
five stars were sufficient to successfully match 93.4% of
cases, rising to 100% at I = 10. This is in contrast to the
results shown in Table 3 for n ≤ 30, which were less reli-
able because both lists were small, resulting in a reduced
match rate. The combination of I = 10, R= 50 provides
both high reliability and good performance, with searches
completing in ∼8 ms.

4 Summary

Two new techniques for matching two-dimensional coor-
dinate lists in nearly constant time have been presented.
The matching phase of OPMB is nearly O(1), being inde-
pendent of list size. These algorithms have a significant
performance advantage over previous techniques, at a
slight loss in generality, caused by the requirement that the
approximate focal length of the optical system is known
a priori. This requirement permits the determination of the
image scale from the physical dimensions of the detector,
allowing OPM algorithms to directly compare a subset of
triangles (or shapes) to their counterparts derived from a
reference catalogue, without having to process the entire
set, as is the case when the scale is unknown. By employ-
ing early exit strategies, postponing work until absolutely
necessary, testing candidates in the order most likely to
yield success, and combining these with and an efficient
mechanism for rejecting false positives, a highly efficient
search, in nearly constant time is possible.

Small uncertainties in the focal length, such as caused
by temperature related changes, are accommodated by
selecting an appropriate matching tolerance. The actual
focal-length is determined and reported as part of the
astrometric solution.

The OPM algorithms are particularly suited to process-
ing large lists or in situations where pattern matching must
be performed as quickly as possible. The performance of
these algorithms makes it practical to search thousands
of fields very quickly, if for example, the coordinates of
the field center were unknown. Similarly, when only an
approximate focal-length is known, it is perfectly reason-
able to attempt to iteratively match the field using a range
of focal-lengths.
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