Charge Separation in Transition States of Reactions Involving Neutral Molecules as Reactants

Bo-Long Poh

School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Abstract

It is shown that the parameter m in the Grunwald-Winstein equation, $\log(k/k_0) = mY$, can be equated to z/z_0 where z_0 is the charge separation in the transition state of solvolysis of t-butyl chloride in a given pair of solvents and z is the charge separation in the transition state of a reaction in which only neutral molecules are involved as reactants in the same pair of solvents.

Introduction

We have been interested^{1,2} in the interpretation and improvement of the various empirical linear free energy equations. In this paper we show that the Grunwald–Winstein equation (equation (1)) can be used to give a quantitative measure of the charge developed in transition states of reactions in which neutral molecules are involved as reactants.

Results and Discussion

In the Grunwald–Winstein equation^{3,4}

$$\log(k/k_0) = mY \tag{1}$$

k and k_0 are the rate constants for a given reaction in a given solvent and in the reference solvent (80% ethanol) respectively, Y is calculated from $\log(k/k_0)$ for the rate constants for solvolysis of t-butyl chloride for each solvent, and m is a constant characteristic of the nature of the reactants and the pair of solvents used in the reaction being studied.³⁻⁵ We find that the parameter m can be expressed as

$$m = z/z_0 \tag{2}$$

where z_0 refers to the charge developed in the transition state of solvolysis of t-butyl chloride in a given pair of solvents and z is the charge developed in the transition state of a reaction in which only neutral molecules are involved as reactants in the same pair of solvents. The solvents are divided into three groups, namely hydroxylic,

- ³ Grunwald, E., and Winstein, S., J. Am. Chem. Soc., 1948, 70, 846.
- ⁴ Fainberg, A. H., and Winstein, S., J. Am. Chem. Soc., 1957, 79, 1597.
- ⁵ Hine, J., 'Physical Organic Chemistry' 2nd Edn, Ch. 7 (McGraw-Hill: New York 1962).

¹ Poh, B.-L., Can. J. Chem., 1977, 55, 3721.

² Poh, B.-L., Can. J. Chem., 1978, 56, 747.

aprotic and non-polar. This classification takes account of the observation that the z_0 values for the solvolysis of t-butyl chloride in these three groups of solvents are different. The reported values are 0.85, 0.57 and 0.48, respectively.⁶ The z values of various S_N1 and S_N2 reactions involving neutral molecules as reactants can be calculated from the reported *m* values in the literature and the appropriate z_0 values by equation (2). The *m* values for a large number of reactions have been reported and we only choose those reactions whose z values have been calculated by other methods, so that a comparison can be made. Table 1 shows that our z values calculated by equation (2) agree well with those obtained by Abraham.⁶ Thus, equation (2) provides a convenient method of calculating the charge developed in transition states of reactions in which only neutral molecules are involved as reactants.

No.	Reactant	Solvents	т	z (this work) ^H	z (literature) ^I	
1	Me ₃ CBr	EtOH-H ₂ O	0.940 ^A	0.80	0.82	
2	Me ₂ CHBr	EtOH-H ₂ O	0 · 544 ^A	0.46	0.51	
3	PhCH ₂ Cl	EtOH-H ₂ O	0·425*	0.36	$0.40, 0.39^{J}$	
4	EtBr	EtOH-H ₂ O	0·343 ^A	0.29	0.31	
5	MeBr	EtOH–H₂O	0·258 ^A	0.22	0.28	
6	Me(CH ₂) ₃ Br	EtOH-H ₂ O	0·392 ^в	0.33	0.28	
7	Ph(Me)CHCl	EtOH-H ₂ O	0.966 ^c	0.82	0·77 ³	
8	Me ₃ N+MeI	dioxan-Me ₂ CO	0 · 755 [₽]	0.43	0.42	
9	$Et_4Sn + HgCl_2$	MeOH-H ₂ O	0·713 ^E	0.61	0.70	
10	C ₅ H ₅ N+MeI	PhH-PhNO ₂	0.582^{F}	0.28	0.30	
11	PhNMe ₂ +MeI	aprotic solvents	0·549 ^G	0.31	0.39	

Table 1. Comparison of z values calculated by equation (2) with literatu	Table 1.	Comparison of	z values	calculated I	v ea	uation ()	2) wit	h literature values
--	----------	---------------	----------	--------------	------	-----------	--------	---------------------

^A Winstein, S., Grunwald, E., and Jones, H. W., J. Am. Chem. Soc., 1951, 73, 2700. ^B Ref.³ ^C Ref.⁴ ^D Tommila, E., and Kauranen, P., Acta Chem. Scand., 1954, **8**, 1152. ^E Abraham, M. H., and Johnston, G. F., J. Chem. Soc. A, 1970, 188. ^F Pickles, N. J. T., and Hinshelwood, C. N., J. Chem. Soc., 1936, 1353. ^G Matsui, T., and Tokura, N., Bull. Chem. Soc. Jpn, 1970, 43, 1751. ^H The values⁶ of z_0 used are 0.85 (reactions 1–7, 9), 0.57 (reactions 8, 11), and 0.48 (reaction 10). ^I Values taken from ref.⁶, pp. 14, 42 and 77, unless otherwise stated. ^J Calculated from the Hammett ρ values given in Jaffe, H. H., Chem. Rev., 1953, 53, 191 according to the method in Poh, B.-L., Can. J. Chem., in press.

Equation (2) has a theoretical basis since it can be derived from the sphere-incontinuum model of Born.^{7–9} According to the Born model the electrostatic contribution to the medium effect on a reaction involving neutral molecules as reactants and in which charge is produced in the transition state is given by

$$\ln \Gamma = (ze)^2 (1/D_{s1} - 1/D_{s2})/rk_{\rm B}T$$
(3)

where $\ln \Gamma$ is the medium effect due to electrostatic contribution, *e* is the electronic charge, *z* is the fraction of charge present in the reaction's transition state, *D* is the dielectric constant, *r* is the radius of the charged transition state, $k_{\rm B}$ is the Boltzman constant, *T* is the absolute temperature; S1 and S2 denote two different solvents.

⁶ Abraham, M. H., Prog. Phys. Org. Chem., 1974, 11, 1.

⁷ Born, M., Z. Phys., 1920, 1, 45.

⁸ King, E. J., 'Physical Chemistry of Organic Solvent Systems' p. 345 (Plenum: London 1975). ⁹ Leffler, J. E., and Grunwald, E., 'Rates and Equilibria of Organic Reactions' p. 266–7 (Wiley: New York 1963).

The two solvents should be closely related in order that the charges developed in the transition states in the two solvents are the same.¹⁰ Therefore, the medium effect on such a given reaction relative to that of the reference reaction, the solvolysis of t-butyl chloride, is given by

$$\ln \Gamma / \ln \Gamma_0 = (z^2 / r) / (z_0^2 / r_0)$$
(4)

where the subscript 0 denotes the reference reaction. Intuitively we expect the radius of the charged transition state to be proportional to the amount of charge present in the transition state because a larger r implies a greater extent of bond cleavage and, therefore, a larger amount of charge developed in the transition state. Therefore, equation (4) may be written as

$$\ln\Gamma/\ln\Gamma_0 = z/z_0 \tag{5}$$

The term $\ln \Gamma$ is related to the rate constants in the two solvents in the form⁸ of equation (6):

$$\ln \Gamma = \log(k_{\rm S2}/k_{\rm S1}) \tag{6}$$

A combination of equations (5) and (6) gives equation (1) with *m* related to *z* in the form of equation (2), $k_{s_2} = k$, and $k_{s_1} = k_0$.

Acknowledgment

The author thanks Universiti Sains Malaysia for a short-term research project grant.

Manuscript received 12 December 1978