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Summary 

The theory of cylindrical probes for measuring thermal conductivity is extended 
to the case of a probe of finite conductivity containing a line source at its centre. This 
provides a more realistic approximation to most actual probes than the theory for a 
probe of infinite conductivity developed by other authors. New experimental results 
are presented which are in complete agreement with theo!'Y' It is shown how an 
estimate can be obtained of the magnitude of a possible thermal contact resistance 
between the probe and the medium and how its influence on the measured conductivity 
can be assessed. 

Conditions under which the theory of the infinite line source can be applied with a 
sufficient degree of accuracy are treated. The properties of various probes described 
in the literature are reviewed in this respect. The importance of measuring both the 
heating and the cooling branch of the temperature against time curve is emphasized. 
Difficulties in measuring thermal diffusivity with-the probe are briefly discussed. 

I. INTRODUCTION 

Measurement of the thermal conductivity of soils and thermal insulating 
materials has received much attention over the past 10 years. One can 
distinguish between two groups of investigators interested in the subject who 
apparently have not always been aware of each other's activities in this field 
(see for instance a recent discussion 'in Nature: de Vries (1956), Webb (1956, 
1957), Makowski and Mochlinski (1957)). The first group is that of engineers, 
who are interested in thermal properties of the soil in connexion with heat transfer 
from buried cables and coils of heat pumps, road construction, etc. The second 
group consists of soil scientists, hydrologists, meteorologists, oceanographers, 
and agronomists, who are concerned with such problems as the energy balance 
of the Earth's surface, the temperature regime of the upper soil and lower air 
layers, and the measurement of soil moisture content by thermal methods. 

Steady state methods are not very suitable for use with soils. They cannot 
be applied in situ and in addition the soil water will redistribute itself under the 
influence of a temperature gradient. Various non-stationary methods have 
been proposed in which the temperature rise is measured of heated test bodies 
of various shapes which are inserted in the soil (Chudnowskii 1946, 1954; Skeib 
1950; Misener 1952). 
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Most actual measurements have been made with needle-shaped cylindrical 
test bodies (which we shall call cylindrical probes or, briefly, probes). These 
'Probes contain as a heat source a thin metal wire which is heated electrically; 
the temperature rise is measured by means of a thermocouple with its" warm" 
junction inside the probe near its centre. They can be installed in situ fairly 
easily without appreciable disturbance of the soil near the measuring thermo
junction. When properly constructed and dimensioned the theoretical inter
pretation of the results is simple. In its simplest form the probe consists of a 
~single heating wire, the temperature of which is measured by means of a thermo
.couple or by a resistance method. 

The cylindrical probe method was first s'uggested by Schleiermacher (1888) 
and independently by StaIhane and Pyk (1931). The method was developed 
and used for measuring the thermal conductivity of liquids by Weishaupt (1940) 
'and by van der Held and van Drunen (1949). The work of the latter authors 
;served as the basis for many further developments. More recent work on the 
thermal conductivity of liquids was published by van der Held, Hardebol, and 
Kalshoven (1953), Gillam and Lamm (1955), Gillam et al. (1955), Hill (1957). 

T .e method was first applied to soils by Hooper and Lepper (1950) and 
inder ~ndently by Skeib (1950). Later work on soils was published by Hooper 
,191':2), Mason and Kurtz (1952), de Vries (1952a, 1952b, 1953), van Duin and 
de Vries (1954), de Vries and de Wit (1954), Buettner (1955a), Makowski 
and Mochlinski (1956). Closely related to the work on soils is that of Bullard, 
Maxwell, and Revelle (1956) on s@diments deposited on the ocean floor. 

Cylindrical probes were used to measure the conductivity of thermal 
insulating materials by Hooper and Lepper (1950), d'Eustachio and Schreiner 
<1952), Mann and Forsyth (1956). 

Measurements on rocks were published by Beck, Jaeger, and Newstead 
(1956). 

The interpretation of the measurements is in most cases based on the theory 
'Of the infinite line source, supplemented by theoretical estimates or calculations 
'Of the influence of finite dimensions. A first attempt by van der Held and 
van Drunen (1949) to calculate the influence of the finite (i.e. non-zero) probe 
radius was unsatisfactory. This was recognized subsequently by van der Held, 
Hardebol, and Kalshoven (1953) and independently by Blackwell (1954). These 
authors treated the theory for a 'probe of finite radius and infinite thermal 
.conductivity. The theory for this case was elaborated by Jaeger (1956). 
Blackwell (1954) also discussed the case of a hollow probe of finite conductivity 
with heat supplied at its surface. In a later paper Blackwell (1956) treated the 
influence of the finite probe length. 

In the present paper the theory is extended to the case of a homogeneous 
probe of finite conductivity with a line source of heat at its centre. This gives 
a more realistic approximation to most actual probes than that of preceding 
theories. A detailed interpretation of experimental results obtained on dry 
sand with probes 'Of various construction is given on the basis of this theory. 
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Following the discussion of probe theory and characteristics in this paper 
we shall treat the complications due to moisture effects in experiments on moist 
soils in a second paper. 

II. NOTATION AND UNITS 

a, Thermal diffusivity of medium (cm2 sec-I), 
a;, thermal diffusivity of probe (cm2 sec-I), 
c, specific heat (cal g-1 °0-1), 

a=pc, volumetric heat capacity of medium (cal cm-3 °0-1), 
ai' volumetric heat capacity of probe (cal'cm-3 °0-1), 
H, heat transfer coefficient (cal cm-2 sec-1 °0-1), 
In' modified Bessel function of first kind and order n( =0,1), 

K n, modified Bessel function of second kind and order n( =0,1), 
l, half length of probe (cm), 

p, variable in Laplace transformation (sec-I), 
q=(pja)i (cm-1), 

q;=(pjai)l (cm-1), 

Q, heat production per unit length of probe (cal cm-1 sec-I), 
r, radial distance from axis of probe (cm), 

R, radius ·of probe (cm), 
R1, outer radius of soil sample (cm), 

t, time (sec), 
tu time at end of heating (sec), 
T, temperature (°0), 

To, initial temperature (°0), 
T;, probe temperature (°0), 
IX=AjAi' 
~=a;ja, 
"(=0 '5772, Euler's constant, 
3, thickness of air gap (cm), 
'1j = AjRH, dimensionless contact resistance, 
A, thermal conductivity of medium (cal cm-1 sec-1 °0-1), 

"Aair, thermal conductivity of air (cal cm-1 sec-1 °0-1), 
Ai' thermal conductivity of probe (cal cm-1 sec-1 °0-1), 
p, denSity (g cm-3), 

,"=atjR2, 
'"I =at1jR2, 
'"1=at/l2• 

III. PROBE THEORY 

(a) The Infinite Line Source 
In its simplest form the theory of the cylindrical probe is based on that of 

the infinite line source embedded in an infinite, homogeneous, isotropic medium. 
The Fourier equation of heat conduction can then be Written 

aT =a(a2T+! aT) 
at Or2 r Or ' 

(1) 
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The initial and boundary conditions are: 

T=To, for t=O, and for r= 00 (t finite), (2) 

Q= -lim 21tAroT/or, for t>O. . .. . . .. . . .. . . ... (3) 
~ 

The solution to this problem is (Carslaw and Jaeger 1948) 

T-To=(Q/41tA)[ -Ei( -r2/4at)]. . ........... (4) 

The exponential integral can be expanded as 

-Ei( -x)= -y-In X+X_!X2+0(X3). . ......... (5) 

Hence for 4at/r2';?1 we have to a good degree of approximation 

T-To=(Q/41tA)( -y+In t+In 4a/r2). . ....... (6) 

When the source discontinues to operate at time tl we must replace condition 
(3) by 

Q= -lim 21tAroT/0r, for 0<t<t1 ; Q=O, for t>t1• 
~ 

The solution now becomes 

. . (3a) 

T-To=(Q/41tA)[ -Ei( -r2/4at)+Ei{ -r2/4a(t-tl)}]' for t>tu .. (4a) 

or, for 4a(t-tl)/r2';?1, 

T -To = (Q/41tA) In t/(t-t1). • • • • • •• • • • • • • • • • • • • • • • •• • • • • •• (6a) 

As we shall see below, a line source can be realized to a good degree of 
approximation by a thin metal wire (e.g. diameter 0·01 cm) which is heated by 
an electric current during the time interval 0 to t 1• In that case A can be found 
from an experiment by plotting T-To against In t for t<tu and also by plotting 
(Q/41tA)(-y+In4at/r2)-(T-To) against In (t-tl)' Values of the first term in 
this expression for t>t1 are found by extrapolation of the line observed for t<t1• 

The derivation of A from both the heating and the cooling branches of the 
temperature-time curve provides a useful check on the procedure. This is of 
special importance in the case of measurements on moist porous media as will 
be discussed in Part II (de Vries and Peck 1958, in press). 

(b) The Probe of Finite Thioknes8 oontaining a Line Souroe 
We shall now extend the theory to that of a homogeneous, isotropic, 

cylindrical probe of infinite length and radius R, which has an infinite line source 
at its centre. 

The heat conduction problem must then be solved for a composite medium. 
The basic differential equation is again equation (1), this time with the thermal 
diffusivity a for r>R and ai for r<R. Instead of the boundary condition (3) 
or (3a) we now have a similar condition with Ai substituted for A. Finally, 
there are additional boundary conditions at the probe-medium interface. 
Assuming a contact resistance at this boundary with heat transfer coefficient H, 
we have 

H[T;(R,t) -T(R,t)] = -AioTdor= -AoT/Or, for r=R. •• (7) 
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Here T;(R,t) and T(R,t) are respectively the temperatures of the probe and the 
medium at the interface. 

The solution to this. problem can be found by the method of the Laplace 
transformation. Denoting transformed temperatures by a bar the transformed 
equations are in the usual notation: 

d2Ti+ 1 dT; pTi_ O 
dr2 r dr - a;:- , 

z 

d2T +~ dT _pT =0 
dr2 rdr a ' 

for O<;,r<R, 

for r>R, 

Q/p= - lim 27tA irdTddr, 
r--->O 

The solution is : 

with 

(8) 

(9) 

(10) 

(12) 

( 13) 

A = (Q /27ttlp) [atKo(qR)Kl (qiR) +a!'YJqRK1 (qR)Kl (q;R) -Aa~\-l KO(qiR)Kl (qR)], 
................ (14) 

tl=Aa~Io(qiR)Kl(qR) +A;a!Il(qiR)[Ko(qR) + 'YJqRK1 (qR)] , .......... (15) 

where 'YJ=A/RH. 
The temperatures T; and T can now be found by applying an inverse Laplace 

transformation.* However, numerical calculation of Ti and T from the resulting 
analytical expressions is very laborious due to the oscillatory character of the 
Bessel functions occurring in the solutions. 

Here we are principally interested in the behaviour of the solution for large 
values of time (4at/R2~1). This can be found along the lines set out by Blackwell 
(1954). The expressions for Ti and If are expanded in ascending powers of p 
and the resultant series is integrated term by term along a contour in the p-plane 
which is cut along the negative real axis. This contour follows the lower negative 
axis (xe-1ti ) from - 00 to the origin, circles the origin counter-clockwise, and 

. returns to - 00 along the upper negative axis (xe1ti ). Using the contour integrals 
listed by Blackwell and 

2~ifpln (CP)etPdP=~' .............................. (16) 

2~ifpln2 (CP)etPdP=-~(ln~+Y-1), ................ (17) 

2~J P In3 (CP)etPdP=~[ 3 (In ~+y r -6(ln ~+y) -!7t2] (18) 

* D. A. de Vrie~, unpublished result (for 7)=0 only). 

H 
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(where the integration is along the contour and c is a real constant), we obtain : 

Ti(r,t) -To=(Q/41tA)G;('r,YJ,a,,~,r/R), for r<;.R, (19) 

T(R,t) -To=(Q/41tA)G('t',YJ,a,,~), (20) 

with a,=A/A;, ~=O;/O, and't'=4at/R2. The functions G; and G are in dimension
less form: 

G;=ln't'-y+2YJ-2a,ln (r/R)+ci,_1't'-1+0('t'-2}n2't'), .... (21) 
with 

(22) 
and 

(23) 

with 

c- 1 =2(1-~)(ln 't'-y) +2 -2YJ~ -a,~, ............................ (24) 

c- 2= -3(1-~)2(ln 't'-y)2+( -1-4~+6~2+2a,~-3a,~2+4YJ~-8YJ~2)(ln 't'-Y) 
1 ' 3 3 

+ 21t2(1-~)2+2-4~ +3a,~2- 4a,2~2+8YJ~2-3YJa,~2_4YJ2~2. . ... (25) 

It can be easily checked that Gi and G reduce to (5) for a,=~=1 and YJ=O. 
For a probe of infinite conductivity (a,=O) the expression for G; reduces to those 
given by Blackwell (1954) and Jaeger (1956) for large 't'. Terms of the order 
't'-2 were not computed for Gi because of the unwieldiness of the resulting expres
sions. However, in the applications considered below it is safe to assume that 
the term with 't'-2 in Gi is of the same order of magnitude as that in G. .A further 
discussion of these equations is given in Section IV. 

Equations (19) and (20) hold for the heating branch only. For the cooling 
branch (t>t1) we have, analogous to equation (4a): 

Ti(r,t) -'-To=(Q/41tA)[G;('t',YJ,a,,~,r/R) -Gi('t' -'t'HYJ,a,,~,r/R)], .. (26) 

T(R,t) -To=(Q/41tA)[G('t',YJ,a,,~) -G('t'-'t'HYJ,a,,~,)]. . ......... (27) 

(c) Miscellaneous Factors 
In the interpretation of a thermal conductivity experiment we must also 

consider systematic errors arising from various factors apart from the finite 
radius of the probe. These factors are: finite length of the probe, finite dimen
sions of the sample, the inertia of the temperature-measuring system, and factors 
connected with moisture movement and an uneven distribution of moisture in 
the sample. The moisture problems will be discussed in a separate paper; a' 
brief discussion of the other factors is given in this subsection. 

The influence of the finite probe length can be made arbitrarily small, of 
course, by a proper choice of the probe dimensions. Blackwell (1956) has 
derived an upper limit for the relative error in the slope of the Ti against In t 
curve due to axial heat flow on the assumptions that the probe is a good conductor 



MEASURING THERMAL CONDUCTIVITY WITH CYLINDRICAL PROBES. I 261 

and that heat is generated uniformly throughout the probe. His equation for 
this upper limit reads in our notation 

'1- oTi(R,t)/olnt_ -![ t+2(1-1X~)(l - +2 )] (_ -1) . (28) 
Q/41tA -1t "I IX",,, n" Y 1) exp "I , .. 

with "1=4atjl2, where l is half the probe length. Once the probe diameter and 
the heating time are fixed a proper value of l can be derived from equation (28). 
As we shall see in the following section, this does not lead to excessive probe 
lengths. 

The influence of the finite dimensions of the soil sample can also be made 
:sufficiently small without difficulty by a proper choice of the dimensions of the 
.sample container. We propose the following simple criterion for this purpose: 
the amount of heat passing through the walls of the container must be small 
in comparison with the heat input at the source during the time of heating. 
Since we are only concerned with its order of magnitude a sufficiently accurate 
,estimate of this amount of heat can be obtained by application of the solution 
for an infinite line source. For a long cylindrical sample container with radius 
Rl this leads to the inequality 

exp (-Ri/4atl)~I. . . . . . . . . . . . . . . .. (29) 

The temperature is usually measured near the centre of the source by a 
thermocouple in connexion with a galvanometer. The inertia of this system 
will be negligible for the type of temperature variation encountered here when 
the time at which the first reading is taken is large in comparison with the period 
of the galvanometer. In our experiments the former was not less than 10 sec 
.and the latter was 0·2 sec. In this case the error in the measured deflection 
is less than 1 per cent. 

IV. NUMERICAL AND EXPERIMENTAL DATA 

In this section we shall apply the preceding theory in discussing the various 
.current methods for measuring the thermal conductivity of soils by means of 
heated cylindrical test bodies. The methods used previously by one of us 
(de Vries 1952a, 1952b) are treated in detail and new experimental results are 
presented to illustrate the argument. A brief discussion of probes described 
by other authors is given in subsection (d). 

Thermal properties of various materials used in the construction of probes 
are listed in the upper part of Table 1, whilst those of soil materials and soils 
are given in the lower part of this table. The former were taken from handbooks 
of physical constants, the latter were derived from various sources (see de Vries 
(1952b) and de Vries and de Wit (1954)). 

(a) Single Wire 

The simplest form of a linear heat source is that of a straight metal wire 
heated by an electric current. We have used constantan and manganin wires 
with diameters of 0 ·01 to 0·02 cm for this purpose. The temperature 
was measured by means of a thermojunction as close as possible to the centre 

HH 
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of the wire. The thermocouple was made of copper and constantan wires with 
a diameter of 0·01 cm. All wires were ell!1melled to secure good electrical 
insulation between the heating circuit and the temperature-measuring circuit. 
This method was employed previously by one of us (de Vries 1952b) for laboratory 
determinations of the thermal conductivity of a sand at various temperatures 
and moisture contents. 

TABLE 1 

THERMAL PROPERTIES OF VARIOUS MATERIALS AT 20°C 

Specific Vol. Heat Thermal Thermal 

Material Density, Heat, Capacity, Conductivity, Diffusivity, 
p c a A a 

(gcm-3) (cal g-1 °C-l) (cal em-3 °C-I) (cal cm-1 sec-1 °C-I) (cm2 sec-I) 

Copper · . 8·89 0·092 0·82 0·92 1·12 
Manganin 8·50 0·097 0·82 0·15 0·18 
Constantan 8·88 0·099 0·88 0·054 0·061 
Monel · . 8·90 0·098 0·87 0·052 0·060 
Glass* · . 2·6 0·2 0·5 2·6 X 10-3 5 X 10-3 

Paraffin · . 0·89 0·69 0·61 0·6xl0-3 1·0 X 10-3 

Air . . · . 0·0012 0·24 0·00029 O· 062 X 10-3 0·21 

Quartz · . 2·65 0·175 0·46 0·020 0·043 
Many soil 

minerals* 2·65 0·175 0·46 0·007 0·015 
Soil organic 

matter* · . 1·3 0·46 0·60 0'6xl0-3 l'Oxl0-3 

Soil, mineral, 
dry* · . 1·50 - 0·26 0·5xl0-3 1·9 X 10-3 

Soil, mineral, 
saturated* 1·93 - 0·69 5 X 10-3 7 X 10-3 

Soil, organic, 
dry* · . 0·13 - 0·060 0·08 X 10-3 1'2xl0-3 

Soil, organic, 
saturated* 1·03 - 0·96 1·2xl0-3 1·3 X 10-3 

* Approximate average values. 

For a heating wire of sufficient length the temperature will lie between that 
given by equations (19) and (20) for the heating branch and equations (26) 
and (27) for the cooling branch, where in (19) and (26) we must take r=R. 
Strictly, we should apply similar equations derived for heat production throughout 
the wire instead of at its centre, but tbe differences are negligible here because 
the conductivity of the wire is large in comparison with that of the soil. 

From the data given in Table 1 it can be easily checked that for R-values 
of 0·01 cm or less the terms of order ,,-1 and higher negative order in equations 
(21) and (23) are negligible for t>10 sec, unless 1) is very large, say greater than 
10. Such large values of 1) are unlikely when soil is packed around the wire, and 
a numerical example given below leads to a value of the order of unity. 
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During our ~xperiments the heating time, tl) is usually 180 sec. It follows 
from equation (28) that the relative error due to axial flow is less than 1 per cent. 
for l> 5 cm, the actual l-value being usually 7·5 cm. Finally Rl in (29) was 
5 cm or more, which, with a<;10-2 cm2 sec-1 and tl =180 sec, leads to 
exp (-R~(4atl)<;0·03. 

Results of an experiment conducted with a dry coarse quartz sand (particle 
sizes ranging from O· 060 to 0·085 cm) and with a manganin heating wire of 
o . 01 cm diameter are presented in Figure 1 (line a). The density of the sand 
was 1·54 g cm-3, its temperature 20 °0. It will be noted that deviations from 

O'SO ,.-------,-------,-----,.-------,----;-----., 

0'60 

U 
e. 

0 0 . 40 ... , ... 

0·20 

0-HEATING 

8,-COOLtNG 

~ , 
, ~ 

, , , 

t (SEC) 

Fig. I.-Temperature rise, T-To, against time, t, for thermal conductivity 
experiments. For the cooling branch time is counted from end of heating (181) 
sec) onwards and points are corrected for the influence of previous heating (see
Section III (a)). Line a, single heating wire, heat input Q=2· 3 X 10-4 cal cm-~ 
sec-I; line b, heating wire in glass capillary, Q=8·0xlO-4calcm-lsec-l; 

line c, probe, Q=6·5xlO-4calcm-1 sec-1 • 

the logarithmic relation are negligible. The value of p. following from thIS: 
experiment was 0·67 X 10-3 cal cm-1 sec-1 °0-1 • Each of the three examples: 
given under (a), (b), and (0) in this section are typical of several runs taken on a, 

sample which gave the same results within the experimental accuracy (±5 per
cent. for A). 

From equation (21) with r=R it follows that the intercept of an extrapolated 
line on the horizontal axis is 

whilst according to equation (24) this intercept becomes 

t=(R2(4a)eY • 

(30) 

(31) 
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The observed intercept will lie somewhere between these two t.heoretical values, 
probably close to the former. When 'YJ=O the two intercepts coincide. In our 
example we find, with 'YJ =0, 0=0, 27 cal cm-3 °0-1, and t=5 ·15 X 10-4 sec, an 
R-value of 0·0017 cm. This is less than the actual value of 0·005 cm. Sub
stituting the latter in (30) we obtain 'YJ=1·08. 

A contact resistance will be due to an air gap between the heating wire and 
the medium. For an annular gap of thickness a we have 

'YJ=("A/"Aair) In (R+a)/R. . ............. (32) 

In the present example this leads to a a-value of 5 X 10-4 cm, which is small 
in comparison with the soil particle size and with the diameter of the wire. 

Apparently large positive or even negative values of 'YJ have been observed 
when the galvanometer received a leakage current from the heating circuit. 
:Such a leakage is easily detected by reversing the direction of the heating current. 

The methods used in the experiments given in subsections (a), (b), and (0) 
were previously described in detail by one of us (de Vries 1952a, 1952b). Here 
we shall by way of example give detailed information on the experiment with 
the single heating wire. 

The resistance per unit length of the wire was determined at 
O' 610 ±O· 005 n cm-I, the heating current was measured at o· 0400 ±O· 0005 A, 
which leads to a Q-value of (2 ·33 ±O '08) X 10-4 cal cm-1 sec-1• The time of 
heating was 180 sec. 

The temperature rise was measured by means of a copper-constantan 
thermocouple connected to a micro-Moll galvanometer. The sensitivity of this 
system was O· 282 ±O ·003 °0 per cm deflection on the galvanometer scale. The 
time was measured with a stopwatch when a line-shaped light mark coincided 
with a millimetre division on the scale. The following .results were obtained: 

Deflection (mm) 
Time (sec) 

10 
13 

Heating 

11 
33 

12 
90 

3 
191 

Oooling 

2 
213 

1 
315 

0·7 
420 

The accuracy of the time readings was better than ±O· 5 sec. Towards the 
end of the cooling run the movement of the light mark became so slow that the 
uncertainty in the, reading of t,he coincidence of the mark with a scale division 
was of the order of ±5 sec. However, such an error represents only a small 
distance on the logarithmic time scale for the times concerned. 

From a graph of T -To against log t the slope of the resulting line is deter
mined at 0·064±0·001 °O~ from which "A is found at (O·67±0·03)xl0-3 

.cal cm-1 sec-1 °0'-1. 

(b) Heating Wire in Glass Oapillary 
A thin heating wire is not always suitable for use in moist soils owing to 

the fact that relatively large values of the temperature gradient occur close 
to the wire. This can lead to a strong migration of moisture near the wire. We 
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therefore also use a heating wire fitted in a glass capillary with an external 
diameter of about 0 ·05 cm and internal diameter slightly greater than the wire. 
In that case the steepest temperature gradients are found in the glass instead of 
in the soil sample. The thermojunction is located ontside the capillary as close 
as possible to ~ts outer surface. 

For R-values of about 0·025 cm and t> 10 sec the terms of order rl and 
,,-2 are still negligible with mineral soils un1ess 'I] is large. However, 'I] will be 
smaller in this case than with the single wire and 'I] will be negligibly small when 
the diameter of the probe is of the same magnitude as the sizes of the larger 
soil particles, assuming that the soil is well packed around the probe: 

.An exception must be made for organic soils of low density at low moisture 
contents (see Table 1), where the terms with ,,-1 and ,,-2 in (23) are not negligible 
in comparison with In "-y, mainly due to the large value of~. In these loosely 
packed dry soils large values of 'I] can also be expected. 

Errors due to axial flow are again negligible for l> 5 cm. Equation (28) 
is not strictly applicable in this case because the conductivity of the probe is 
not necessarily large in comparison with that of the soil. However, this equation 
will still give a fair estimate of the error because in this case the dominant term 
is rc-!"l exp ( -"l-l). This term is due to deviations from radial flow in the 

. (infinite) medium surrounding the probe and is independent of its diameter and 
thermal properties. . 

As an example results of an experiment with a heater of this type on the 
same coarse sand as mentioned above is given in Figure 1 (line b). The density 
of the dry sand was 1·58 g cm-3, its temperature 17°C. The measured con
ductivity was 0·73 cal cm -1 sec-1 °C-I. From the intercept on the horizontal 
axis (0'035 sec) and equation (31) we find R=0'014 cm, which is smaller than 
the actual value, 0·030 cm. Substitution of the latter in (30) leads to '1]=0'38 
and from (32) to a=I·0 x,10-3 cm. 

(c) The Thermal Oonductivity Probe 
A probe for measuring thermal conductivity of soil in situ was developed 

by one of us (de Vries 1952a, 1952b). Its construction and dimensions are 
shown in Figure 2. An automatic recording apparatus to be used in connexion 
with the probes was described by van Duin and de Vries (1954). 

The diameter of the probe is about 0·11 cm. Average values ot Ai and 0; 
will be used in finding IX and~. From the composition of the probe its average 
volumetric heat capacity is found to be 0 ·63 cal cm-3 °C-l. The average radial 
conductivity of the probe outside the heating wire is estimated at 1· 0 X 10-3 

cal cm-1 sec-1 °C-I. It will be noted that the thermal resistance is mainly 
located in the paraffin. The distance of the thermojunction from the centre of 
the heat source is approximately 0 ·025 cm. Values of 'I] will be negligibly 
small when there is a good contact between the soil and the probe, except for 
very coarse sand or soil of very low density. 

It can be easily checked that for t> 10 sec terms of order ,,-1 and of higher 
negative ;powers of" in equations (21) and (22) are still small in comparison with 
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ill'r-y for mineral soils and for wet organic soils. A numerical example is 
given below. For very loose and dry organic soils these equations can no longer 
be applied, because the various terms become of the same order of magnitude . 
..Apart from experiments with the latter. soils (which are very rare), the theory 
of the line source can be applied to a probe of this construction to a sufficient 
approximation. 

As an example we give the results obtained with a probe in the same coarse 
sand as mentioned before at a dry density of 1·54 g cm-3 and at 20 °0 (Fig. 1, 
line 0). Slight deviations from the linear relationship occur with the first few 
points (t=13 and 20sec), which are of the expected magnitude. On such 

Fig. 2.-Radial and longitudinal cross sections of probe. 1, Monel gauze 
(filled with paraffin wax); 2, glass capillary; 3, paraffin wax; 4, thermo
junction; 5, heating wire; 6, constantan wire; 7, copper wire; 8, insulating 

cover; 9, plastic socket. 

occasions more weight is given to the points at higher t in drawing the line. In 
this case the value of A was found to be 0·71 XI0-3 cal cm-1 sec-1 °0-1• With 
O=0'27calcm-SOO-1 this leads to a=2'63xl0-3 cm2 sec-1, oc.=O·71, and· 
[3=2'33. At t=13 sec we find -.=45·1. 

From equation (21) with 'Yj=0 and the observed intercept on the horizontal 
axis (t=O ·13 sec) we find r=O ·021 cm, which is sufficiently close to the estimated 
value (0'025 em) to support the assumption 'Yj=0. Using equation (21) with 
t=13sec we have: In-.-y-2oc.lnr/R=4·607 and Oi._l-.-1=-0·214. The 
relative deviation from the straight line due to the term Oi._lr1 is therefore 
-0 '214/4 ·607 = -0 ,046. In comparison, the observed value at t=13 is 
-0· 045 (±O· 005 due to a possible random error in reading t); this includes, 
of course, the effect of terms with higher negative powers of -.. The values of 
the various terms on the right-hand side of equation (23) are in this case: 
In -.-y=3 .234,0_ 1-.-1 = -0 '172, and 0_ 2-.-2=8,8 xl0-5. With increasing -., i.e. 
for longer times or for larger a (moister or denser soil), the deviations from the 
theory of the line source become even smaller . 

..According to equation (21) the intercept for T=To is 

t=(R2/4a)(r/R)2IXeY-2Ti. . .................. (33) 
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From this equation a check can be obtained on the approximate value of 't). 
This is of special importance in field experiments, where it would otherwise 
be impossible to know whether or not a sufficiently good thermal contact between 
the probe and the soil exists. .A value of a based 'on an estimated value of G 
will suffice for this purpose. Such an estimate can be obtained from the dry 
density of the soil (measured on samples taken when placing the probes) and its 
approximate moisture content which follows from the measured conductivity. 

When 't) is not negligible its influence on the value of A can be assessed from 
~quation (21). The term 2't) has no influence on the slope of the T-To against 
In t curve. The contribution of 't) to the correction term of first order is 

4't)~ GiR2 ( 0) GiRo - -=- -:;-:-In I+R- R:j-~, •••••••••• (34) 
't' I\au:t I\au:t c 

which is independent of the thermal properties of the medium. If, for instance, 
:0=0·01 cm we have GiRojAairt=I·12jt and the first order term in Gi due to 't) 
becomes -0 ·112 and -0' 0063 after 10 and 180 Sec respectively. The resulting 
relative error in A is therefore -0 ·106jln 18 = -0·037. The contribution of 
the terms proportional to 't)'t'-2 will be much smaller (see equation (25)). 

The possible error in the A-values following from the probe experiments 
was discussed by one of us (de Vries 1952b); it was found to be about ±5 per 
cent. It was shown in the same paper that the A-values for a dry quartz sand 
found from probe experiments were in close agreement with results on similar 
materials obtained with more conventional stationary methods by Smith aud 
Byers (1938) and Kersten (1949). In addition, it was demonstrated that a 
theoretical calculation of the thermal conductivity from the composition of the 
sand led to values which were in good agreement with the experimental ones. 

We therefore conclude that the probe method can be applied with confidence 
as an absolute method for measuring thermal conductivity. This conclusion 
receives further support from the work of others who compared probe results 
with those obtained by the guarded hot plate method (see d'Eustachio and 
Schreiner 1952; Mann and Forsyth 1956). c Moreover, the material presented 
in this section shows that a detailed theoretical interpretation can be given of all 
aspects of the observed temperature curves. 

(d) Ot~er Probes, General Remarks 
It will be clear from the foregoing examples that it is desirable to keep the 

probe diameter as small as possible to secure large values of 1:' and thereby small 
deviations from the simple logarithmic relationship between T -To and t. These 
deviations decrease, of course, with increasing time, but large values of tare 
themselves undesirable. They necessitate the use of a long probe and large 
sample containers. In addition, with moist soils the amount of water that 
moves away from the probe increases with time. 

Deviations from the simple theory due to the thickness of the probe can 
be further reduced by choosing (X small and ~ close to unity. These requirements 
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cannot be met entirely in a single probe over the range of Po and 0 values found 
in soils. ' In some instances a hollow probe will be preferable to a solid one. 

Various characteristics of a number of cylindrical probes designed for 
measuring the conductivity' of soils and thermal insulating materials are listed 
in Table 2 in chronological order of publication. In most cases application 
of the simple theory will be permissible with these probes, except that of Buettner 

TABLE 2 

DIMENSIONS, THERMAL PROPERTIES, AND TIME INTERVALS FOR CYLINDRICAL PROBES 

Time of Time 

Authors Dianleter, Length, Radial Thermal Vol. Heat First of 
2R 2l Conductivity, Capacity, Reading Heating 

Ai G, to t1 

(cm) (cm) (cal cm-1 sec-1 °C-I) (cal cm-3 °C-1) (sec) (sec) 
-

Skeib (1950) 0·11 25 12 X 10-3 0·38 50 100 
Hooper and 

Lepper 
(1950) .. 0·48 46 0·08 X 10-3 0·37 180 420 

de Vries . 
(1952a, 
1952b) · . 0·11 13 l'OXIO-3 0·63 10 18O' 

d'Eustachio 
and 
Schreiner 
(1952)t .. 0·076 10 0·6xl0-8* 0'60* - -

Mason and 
K u r t z 
(1952)t .. 0·63 60 - - 60 1500 

Buettner 
(1955a) · . 0·07 2·5 1'0X 10-8* 0'60* 1 IO' 

Bullard et al. 
(1956) · . 0·086 6·34 - - 5 60O' 

Mann and 
Forsyth 
(1956) · . 0·14 10 1·0xl0-3* 0'60* 20 120 

Makowski and 
Mochlinski 
(1956) .. 0·48 46 0·08 X 10-8 0·37 40 1200 

* Value uncertain. 
t Heater in the form of' a coil. 

(1955a), which is tpo short. Buettner (1955b) based his design on the theory 
for a probe of infinite conductivity (cx=O). However, his numerical values are 
in error (cf. Jaeger 1956) and, in addition, the approximation cx=O is not 
permissible for the smaller 't"-values in his experiments. This probably is the 

. reason for his use of an empirical calib!ation constant to be obtained by calibrating 
the probe ·.in materials with a O-value close to that of soil. 
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We wish to emphasize that the determination of more than' two points on 
the T -To against In t curve is highly desirable. A procedure in which the 
slope of a line is determined from two points only (e.g. Hooper and Lepper 1950 ;. 
Skeib 1950) provides no clues as to the occurrence of systematic or large random 
errors. On the other hand a reasonable safeguard is obtained by adopting the 
following procedure: 

(1) lines are plotted for both the heating and the cooling branches of the· 
temperature curve, which should be found to coincide within the expected 
experimental error, 

(2) a check is made on the magnitude of a possible contact resistance by 
the method set out in subsection (0). 

For certain applications it is impossible to achieve sufficiently large values 
of l' to apply the simple theory or large time approximations such as equations 
(21) and (23). This is the case, for instance, with measurements of rock con
ductivity in boreholes where the probe diameter must be rather large, and in 
measuring the conductivity of liquids where convection sets in after a certain 
time. It is then necessary to apply analytical solutions, which so far have only 
been derived and calculated numerically for infinite conductivity of the probe. 
In the results reported by van der Held, Hardebol, and Kalshoven (1953) the 
probe conductivity is not sufficiently great in comparison with that of the 
measured liquids for the approximation IX=O to hold. This might account for 
the systematic error reported by these authors. 

An interesting modification of the probe method for application to liquids 
was published recently by Hill (1957). In this method the thermocQuple wires 
also serve to carry the heating current, the latter being applied during a fraction 
of a second only. 

(e) Measuring Thermal Diffusivity 
It has been suggested by some authors (Skeib 1950; Misener 1952) that the 

thermal diffusivity can also be obtained from a probe experiment, whereas others 
(Buettner 1955b; Beck, Jaeger, and Newstead 1956) have pointed to the 
difficulties of doing so. 

From equation (21) it will be clear that a can only be found when Ail r, R,. 
and "f) are known. R is easy to m~asure, whilst Ai and r could be determined 
for each probe by calibration in two materials of known conductivity and 
diffusivity. The value of "f) depends on the contact between the probe and the 
soil, which during field experiments may change in the course of time. A 
determination of a only seems possible when it can reasonably be expected that "f) 

is negligibly small. But even then the accuracy in the value of a would be small, 
as it can be easily seen from the lines in Figure 1 t.hat a small relative error in A 
would cause a much larger relative error in the intercept on the horizontal axis 
and thereby in the measured diffusivity. With line 0 in Figure 1, for instance, 
a relative error of 3 per cent. in A would result in a relative error of about 20 per 
cent. in a, assuming that the observed point at t=100 sec is correct. 
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V. CONCLUSIONS 

It is shown theoretically that the thermal conductivity of soils and materials 
,of similar thermal properties can be accurately measured by the cylindrical 
probe method. Experimental results in close agreement with the theory are 
-presented. 

The outer diameter of the pro be should preferably be of the order of 0·1 cm 
or less, its length of the order of 10 cm. The volumetric heat capacity of the 
probe should not be large in comparison with that of the observed material, its 
thermal conductivity should preferably not be small in comparison with that 
of the material. 

An estimate of the contact resistance coefficient can be obtained from the 
,observed temperature rise and an estimate of the volumetric heat capacity of 
the material. The influence of the contact resistance on the value of the thermal 
,conductivity can then be assessed from the theory; it is negligible when the 
soil is well packed around the pro be. . 

The thermal diffusivity can be found when the contact resistance coefficient 
is negligibly small or accurately known, but no high degree of accuracy is to be 
,expected. 
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