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Abstract 

The Bargmann-Wigner equations are used to derive relativistic field equations with only 2(2j+ 1) 
components of the original wavefunction. The other components of the Bargmann-Wigner wave
function are superfluous and can be defined in terms of the 2(2j+ 1) components. The results are 
compared with various 2(2j+ 1) theories in the literature. Sylvester's theorem and some properties 
of induced matrices give simple relationships between the operator matrices of the field equations 
and the arbitrary spin operator matrices. 

1. Introduction 
The relativistic equations of Bargmann and Wigner (1948) describe particles of 

arbitrary spin. They have their foundations in the earlier work of Dirac (1936), 
Fierz (1939), Fierz and Pauli (1939) and many others, all of whose contributions are 
well summarized and discussed by Corson (1955). They generalize the Dirac spin 
1/2 equation, retaining the linear differential operator but replacing the 4-spinor 
wavefunction by a 2jth-rank 4-spinor (j being the spin quantum number) as follows: 

(yl'0l'+m)aa'l/Ja'py ... ix) = 0, 

(yl'0l'+m)pP'l/JaP'Y .. )x) = 0, } (1) 

The yl', with J1 = 1 ... 4, are the Dirac matrices and 01' is the 4-vector operator 
(\7, - i %t). Since the operator matrix is contracted with one index of the wave
function at a time, some of the results for the spin 1/2 equation can be carried over 
directly into the Bargmann-Wigner equations; notably, manifest covariance and 
that the components of the wavefunctions obey the Klein-Gordon equation. The 
simplicity of these equations, however, breaks down as soon as attempts are made to 
subject them to second quantization. In particular, a Lagrangian is difficult to 
determine directly. Kamefuchi and Takahashi (1966) found a systematic approach 
to a Lagrangian formalism by initially expanding the wavefunction in terms of all 
4 x 4 matrices with a desired symmetry. Substitution of the expanded wavefunction 
back into the Bargmann-Wigner equations yields dynamical field equations together 
with supplementary conditions. A suitable Lagrangian can then be found. The 
text book by Lurie (1968) describes the procedure well for second-rank symmetric 
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spinor fields (yielding a vector boson field) and third-rank symmetric spin or fields 
(yielding the Rarita-Schwinger equations) and his is the nomenclature adopted here 
(Appendix 1). A similar but somewhat more general approach to a Lagrangian 
has been described recently by Doria (1977) who makes use of the properties of 
spinors embedded in a Clifford algebra (Sauter spinors). 

By contrast, arbitrary spin fields can also be described by equations containing 
2(2j+ 1) components in their wavefunctions (the minimum number of components 
is either 2j+ 1 or 2(2j+ 1) depending on the form of the equation). Foldy (1956) 
described such a theory but he sacrificed manifest covariance. Now manifest covariance 
is not a necessity but it obviously simplifies the handling of transformations. Further
more, how does one include minimal coupling into a noncovariant set of equations? 
Later work by Joos (1962), Weinberg (1964), Weaver et al. (1964), Mathews (1966), 
Williams et al. (1966), Hammer et al. (1968), Guertin (1974) and Weaver (1975) estab
lished 2(2j+ 1) component wave equations which were either manifestly covariant 
or had a well-defined covariance. 

The equation of Joos (1962) and Weinberg (1964), namely 

(y"I/Z".IZ) a/ll allz ". allz} +m2i)tfJ(x) =;: 0, (2) 

where the y/ll/l2"./l2} are 2(2j+ 1) x 2(2j+ 1) matrices, is a generalization of the covariant 
form of the Dirac spin 1/2 equation. Like the spin 1/2 equation each component of 
tfJ(x) obeys the Klein-Gordon equation. Weaver et al. (1964), Mathews (1966), 
Williams et al. (1966) and Hammer et al. (1968) generalized the Hamiltonian form 
of the Dirac spin 1/2 equation by considering a generalized Foldy-Wouthuysen 
transformation. Relevant here is the more recent work of Krajcik and Nieto (1977) 
who have considered Foldy-Wouthuysen transformations, and their relationships 
to Lorentz transformations, for linear arbitrary spin wavefunctions in a space with 
an indefinite metric (as opposed to a positive-definite metric) with particular emphasis 
on Bhabba equations. Such systems, however, are not high spin 2(~j+ 1) component 
theories. 

Second quantization is straightforward (Joos 1962; Weinberg 1964, 1969; 
Mathews and Ramakrishnan 1967; Nelson and Good 1968; Weaver 1968). However, 
the approach has been to develop propagators, S-matrices and Feynman rules without 
the intermediate machinery of a Lagrangian. Hurley (1971, 1972, 1974) has developed 
arbitrary spin equations which are amenable to a simple Lagrangian formalism and, 
indeed, are causal in the presence of minimal coupling and are readily second
quantized. He succeeds by introducing wavefunctions with 12j+2 components, 
4(2j+ 1) of which are independent. Ideally, one would like similar results for a 
2(2j+ 1) component theory. 

In this paper the Bargmann-Wigner equations, with arbitrary spin symmetric 
2jth-rank spinor wavefunctions, will be shown to yield a 2(2j+ 1) wave component 
equation (an antisymmetric second-rank spinor is used for spin 0). The extra 
components in the Bargmann-Wigner wavefunction are superfluous and can be 
defined (nondynamically) in terms of the 2(2j+ 1) components. Thus the Bargmann
Wigner and the 2(2j + 1) theories are interrelated: a result which is not surprising 
since they purport to describe the same physics. 

A relationship between rotation matrices and spin matrices is obtained using 
Sylvester's theorem, and is probably much simpler than relationships already in the 
literature. 
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There are high spin field theories other than those discussed above; for example, 
the 16-component theory for spin 1 developed largely by Durand (1975), and 
generalized to arbitrary spin. However, these are not of direct concern in this paper 
and will not be considered. Likewise, the many problems often found in high spin 
interacting fields, such as acausality, imaginary eigenenergies and loss of constraints, 
will not be discussed; for recent summaries the reader is referred to the papers by 
Babu Joseph and Sabir (1977) and Cox (1977). 

The general spin case will be discussed first and then the results for spin 1 will be 
examined in detail. 

2. Arbitrary Spin Particles 

Consider the Dirac spin 1/2 equations 

(-E+Jl)t/l1,2 = (-P. cr)t/l3,4 , 

(E+Jl)t/l3,4 = (P.cr)t/ll,2' 

(3a) 

(3b) 

where t/ll,2 and t/l3,4 are two-component spinors (t/ll' t/l2) and (t/l3' t/l4), cr is the Pauli 
spin matrix vector (0"1,0"2,0"3) and E and P are the differential operators i a/at and 
- iV respectively. 

In this section, the Bargmann-Wigner equations will be used to generalize equations 
(3) to 

( - E + Jl )2i t/ll:P = (-P . cr )[2j] t/I~:i] , 
(E + Jl)2 i t/I~:i] = (P. cr)[2j] t/ll:4] 

(4a) 

(4b) 

for spin j, where the symbol [2j] denotes the 2jth induced matrix or spinor, the 
definitions and derivations of which are discussed in Appendix 2. For example, 
the second and third induced matrices and corresponding spinors of P. cr and t/ll,2 are 

r P; .j2P,P_ Po. 1 r ~H 1 y'2P;P + (-P; +P + P _) -y'2~zP _ , y'2t/112 (5) 

P + -y'2Pz P + Pz t/I 22 

and 

p 3 
z y'3P;P_ y'3PzP: P: t/l111 

y'3P; P + (-P; +2PzP + P _) (P: P + -2P; P _) -y'3Pz P: y'3 t/l112 I. (6) 
y'3Pz Pt (-2P;P+ +ptp-) (-2Pz P+P- +P;) y'3P;P_ y'3t/1122 

p 3 
+ -y'3Pt Pz y'3P;P+ -P; t/I 222 

Here P ± = Px ± iPy , and the spinor components are completely symetric in their 
indices and are in general multiplied by the square root of (2j)!/(j+m)!(j-m)!, 
where m ranges fromj to -j down the column. 

The induced matrices of equations (4) are related to the more familiar rotation 
matrices. The matrices - in. cr, (- in. cr)[2] and (- in. cr)[3] are those for rotation 
of spin 1/2, 1 and 3/2 particles by an angle n about the unit vector n, a point discussed 
further in Section 4. 
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Equations (4) can be derived from the Bargmann-Wigner equations by eliminating 
all spinor components except those of If Nil and If Nil. The process will be carried , , 
out explicitly in Section 3 for spin 1. However, for arbitrary spin the proof is by 
the method of induction. Thus equations (4) are assumed to be derivable from the 
Bargmann-Wigner equations for spin j and with this assumption are proved, via 
the Bargmann-Wigner equations, to hold for spin j+ 1/2. Obviously the results 
(4) are derivable for j = 1/2, so by induction must be correct for all spins. 

For spinj the Bargmann-Wigner equations with a totally symmetric wavefunction 
are 

-E+p, 0 Pz p- l/! lap ... T(V) 

O -E+p, P+ -Pz l/! 2ap ... T(V) I = 0, (7) 
-Pz -P- E+p, 0 l/! 3ap .. . T(V) 

-P+ Pz 0 E+p, l/! 4ap .. . T(V) 

where there are a total of 2j suffixes on each component such that fL < /3 < ... < 'r 

and the suffix v is excluded. For spinj+ 1/2 the suffix v is included and is allowed to 
range from 1 to 4. Now, the Bargmann-Wigner equations for spin j+ 1/2 can be 
manipulated in exactly the same way as the equations for spin j provided the floating 
index v is held constant. As a result, if equations (4) hold for spin j then they will 
also hold for spin j+ 1/2, provided the extra constant suffix v is added to the wave
function components. 

The expanded top row of equations (4) with v included is 

( E+ )2j.l, +p2i( )2i+l.l, +2'p2i-lp ()2i +l.l, + 0 - P, 'f'11. .. 1(v) z - 'f'33 ... 3(v) J z - - 'f'33 .. .4(v)"· = . 
(8) 

When v = 3 or 4, equation (8) contains the non-essential terms l/!11 ... 13 or l/!11 ... 14' 
However, these terms can be eliminated by using the relationships 

-Pzl/!11 ... 11- P -l/!21. .. 11 +(E+P,)l/!31. .. 11 = 0, 

- P .1, + p .1, + (E + 11).1, = 0 + 'f'11 ... 11 z'f'21. .. 11 r' 'f'41. .. 11 

derived from equation (7) with fL, /3, ... , 'r, V = 1,1, ... , 1, 1. The results are 

( - E + p,)2i(pz l/!11. .. 1l + P -l/!21. .. 11) + (E + p,)p;i( - )2i + 1l/!33 ... 33 

(9a) 

(9b) 

+ (E+p,)2jP;i- 1 p_(_)2i +ll/!33. .. 34 + ... = 0 (lOa) 
and 

( E+ )2i(p .1, P .1, ) +(E+ )p2i( )2i +l.l, - P, +'f'11. .. 11- z'f'21. .. 11 P, z - 'f'33 ... 34 

+(E+p,)2jP;i- 1p_(_)2i +ll/!33. .. 44+'" =0. (lOb) 

Eliminating first l/!21 ... 11 and then l/!11 ... 11 from equations (lOa) and (lOb), multiplying 
the results throughout by (-E+p,) and dividing by p2, we obtain 

(-E+p,)2i +ll/!11 ... 11 +( - )2i +2p;i+1l/!33 ... 33 

+( - )2i +2(2j+ I)p;i P -l/!33. .. 34 + ... = 0, (lla) 
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( _E+II)2i+1", +( __ )2i+2p2ip ,I, 
I'" '1'21 ... 11 z + '1'33 ... 34 

+ (_)2i+2(2jP;i-1 p+p __ p;i+1)t/l33 .. .44 + ... = O. (11b) 

These correspond to the expanded first two rows of the j+ 1/2 equations analogous 
to (4) (i.e. replace the superscripts 2j by 2j + 1). The other rows of the j + 1/2 equations 
may be derived in a similar way. The set of equations (4) is known to be correct for 
j = 1/2, so that by induction it is correct for all spins. 

Since (P. a)[2j](p • al2i] = {(P. a)(P • a)}[2j] = (p2)2i , equations (4) result in 

[(E 2 _ Jl2)2i _ (p2)2i] 1,2 = 0 {
t/I[2j]} 
,1,[2j] , 
'1'3,4 

which factorizes to 

(E2_Jl2_p2)[(E2_Jl2)2i-1+(E2_Jl2)2i-2p2+ ... +(p2)2i-1] t/l1,2 = O. 
,1,[2i] 

{ 
[2j]} 

'1'3,4 

(12) 

(13) 

The Klein-Gordon equation is therefore always a solution but is not unique. In 
order to obtain a unique solution, E 2 is replaced by p2 + Jl2 in the expansions of 
(-E+Jl)2i and (E+Jl)2i ; a process that is valid because the Bargmann-Wigner 
equations obey the Klein-Gordon condition uniquely (see Lurie 1968, p. 27). Thus 
we have 

(-E+Jl)2i = -ES+R, (E+Jl)2i = ES+R, (14) 
where 

0() (2j)! Jl2i ( P2) I 
R = ,ra (2j - 21) !(21)! 1 + Jl2 ' 

0() (2j)! Jl2i-1 ( P2)' 
S = I~O (2j-21-1)!(21+1)! 1+ Jl2 . 

Substitution from equations (14) into (4) then gives 

( _ ES + R)",[2i ] = (-p • a)[2j] ,1,[2j] 
'1'1,2 '1'3,4, 

(ES + R)t/lf{;iJ = (P. a)pj] t/I~:4] . 

(15a) 

(15b) 

Equations (15) obey the Klein-Gordon condition uniquely, as can be shown by 
using the easily derivable relationship 

R2_(p2+Jl2)S2 = (_p2)2i . 

Equations (4) and (15) should be compared with equations 7(17) and 7(18) given 
in the paper by Weinberg (1964). His operators n( -iO) and ir( -iO) are equivalent 
to [E - P. a][2j] and [E + P. a][2j] in our notation. Thus equations (4) and (15) and 
the loos-Weinberg equations (2) are simply alternative ways of writing the Bargmann
Wigner equations. 

In the next section the particular case for spin 1 will be derived in detail rather 
than using equations (4) directly. This allows a comparison of our results and 
derivations with those commonly found in text-book decriptions of vector boson 
field equations. Spin 0 is also considered. 
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3. Spin 1 and Spin 0 Particles 
The Bargmann-Wigner equations for spin 1 are, 

[ -E+Jl p.a] r~u ... ~~'] 
-P.a E+Jl : : =0, (16) 

0/41 ... 0/44 

where o//lV = o/v/l' They can be expanded to give 

[ -:+Jl o ][0/11 
-E+Jl 0/21 

0/12] + [ Pz 

0/22 P+ 

P - ][0/13 
- Pz 0/14 

0/23] =0, 
0/24 

(17a) 

-[ Pz P- ][0/13 0/14] + [E+Jl o ][0/33 0/34] = 0, (17b) 
P+ -Pz 0/23 0/24 0 E+ Jl 0/43 0/44 

[ -:+Jl o ][0/13 
-E+Jl 0/23 

0/14] + [ Pz 

0/24 P+ 

P- ][0/33 
-Pz 0/43 

0/34] = 0, 
0/44 

(17c) 

-[ Pz P- ][0/11 0/12] + [E+Jl o ][0/13 0/23] = O. (17d) 
P+ -Pz 0/21 0/22 0 E+Jl 0/14 0/24 

Equation (17c) transposes to 
+--

[ -:+Jl o ][0/13 0/23] + [0/33 0/34][ Pz P+ ] (18) =0, 
-E+Jl 0/14 0/24 0/43 0/44 P- -Pz 

where the arrow indicates that the operator matrix acts to the left on the wavefunction 
matrix. 

Multiplying equation (17d) by -E+Jl and (18) by E+Jl and then subtracting 
both sides of the resulting equations, we obtain 

+--

[
pz 

(-E+Jl) P+ P - ] [0/11 0/12] +(E+ Jl)[0/33 0/34] [pz P + ] = 0 
-Pz 0/21 0/22 0/43 0/44 P - -Pz 

(19) 

and hence 
+--

(_E+Jl)2[0/11 0/12] _ [pz P - ] [0/33 0/34] [pz P + ] = 0, (20a) 
0/21 0/22 P+ -Pz 0/43 0/44 P- -Pz 

+--

_[pz 

P+ 
P - ] [0/11 0/12] [pz 

-Pz 0/21 0/22 P-
P+] (E )2[0/33 0/34] + +Jl = 0, 
- Pz 0/43 0/44 

(20b) 

where the fact that the components of the Bargmann-Wigner wavefunction obey 
the Klein-Gordon equation (Lurie 1968, p. 27) has been used. 
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Expansion of equations (20a) and (20b) shows that they can be put in the alternative 
forms 

l
l/ll1 ~ l P; .j2Pz P - P: ~l1/l33 ~ 

(-E+I1Y.j21/112 - .j2P:P+ (-P; +P+P_) -.j2:z P- .j21/134 = 0, (2la) 

1/122 P + -.j2Pz P + Pz 1/144 

l 
P; .j2Pz P - P: ~ll/ll1 ~ ll/l33 ~ 

- .j2P;P+ (-P; +P+P_) -.j2:z P- .j21/112 +(E+Jl)2 .j21/134 = O. (2lb) 

P + -.j2Pz P + Pz 1/122 1/144 

The 3 x 3 matrix, containing components quadratic in Pz , P + and P _, is the second 
induced matrix of P. (J (Appendix 2). The factor of .j2 in the wavefunction conforms 
with the usual convention (Landau and Lifshitz 1959). Obviously equations (2Ia) 
and (2lb) can be combined and result in a 2(2j+ 1) component wave equation 

[( -E+Jl)2 n] [I/IA] = 0, 
n (E+Jl)2 I/IB 

(22) 

with l P; .j2Pz P - P: ~ 
n = .j2P;P + (-P; +P + P _) -.j2:z Po_ , 

P + -.j2Pz P + Pz 

l l/ll1 ~ r 1/133 ~ I/IA = .j21/112 , 1/13 = - .j21/134 . 

1/122 1/144 

Since n2 = P4, equations (2Ia) and (21 b) can also be reduced to 

[(E 2-Jl2)2_p4]I/IA = 0, (23) 

which contains the Klein-Gordon equation as a solution together with the 
'unphysical' equation (E 2 - Jl2 + p2)1/1 A = O. However, if 1/1 A can be expanded in 
terms of plane waves with real energies and momenta and travelling at less than the 
speed of light, then the algebraic relationship resulting after operating with 
E 2 - Jl2 + p2 is inadmissible if relativity holds, so that only the Klein-Gordon equation 
can be obeyed. Similar arguments apply equally well to the arbitrary spin equations 
derived in Section 2 and to the arbitrary spin equation (2) of Joos and Weinberg 
considered in the Introduction. Hammer et al. (1968) have shown that the hyperplane 
formalism of Fleming (1966) can be used to ensure that the wavefunction components 
of equation (2) always obey the Klein-Gordon equation. We considered an alternative 
procedure in Section 2. 

With the unitary matrix ll/.j2 -i/.j2 O~ 
T = 0 0 - 1 , (24) 

-1/.j2 -i/.j2 0 
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equation (2la) can be transformed to 

~ l/Ill j (-E+I1Yr- 1 ..j2l/112 

l/I22 

~ 
p2 

- r- 1 ..j2P:P + 

p2 

..j2PzP -

(-P; +P+P_) 

-..j2PzP + 

P: j ~ l/I33 j 
-..j2:zP _ rr- 1 ..j2l/134 = 0 

Pz l/I 44 

(2Sa) 

+ 
or 

~ (l/Ill -l/I22)/..j2j 

(-E+I1)2 i(l/Ill +l/I22)/..j2 

- ..j2l/112 

~(P;-P;+P;) -2PxPy -2PxPz j~(l/I33-l/I44)/..j2j 
- -2PyPx (P;+P;-Pir) ~2PY2Pz 2 i(l/I33+l/I44)/..j2 = o. (2Sb) 

-2PzPx -2Pz Py (-Pz +Px+Py) -..j2l/134 

The 3 x 3 matrix in equation (2Sb) is equivalent to 2 graddiv - \12, when it operates 
on a vector. Since 

and 
[(l/Ill-l/I22)/..j2, i(l/Ill +l/I22)/..j2, -..j2l/112] 

[(l/I33-l/I44)/..j2, i(l/I33+l/I44)j.J2, -..j2l/134] 

transform like two vectors (Cartan 1966), equation (2Sb) becomes 

where 
iot l/l1 = - \12(l/Il +l/I2)/2fl- +fl-l/Il +graddivl/l2/fl-, 

~ (l/Ill-l/I22)/..j2j 
l/Il = i(l/Ill +l/I22)/..j2 , 

-..j2l/112 

~ (l/I 33 -l/I 44)/ ..j2j 

l/I2 = - i(l/I33+l/I44)/..j2 

-..j2l/134 

(26) 

and (- E + fl-)2 has been replaced by - \12 + 2fl-2 - 2ifl-ot. Similarly, equation (21 b) 
reduces to 

i at l/I2 = \J2(l/Il +l/I2)/2fl- - fl-l/I2 - graddivl/l1/fl-· (27) 

Equations (26) and (27) are identical with equations 1(124a) and 1(124b) given by 
Lurie (1968), and describe a massive vector field. The notation used by Lurie is 
l/Il == (A-iE/fl-)/..j2 and l/I2 = -(A+iE/fl-)/..j2, where A and E reduce to the vector 
potential and electric field when the mass becomes zero. 

The nondynamical relationship 
*-

2fl-[l/I13 l/I23] _ [pz P - ] [l/Ill l/I12] + [l/I33 l/I34] [pz P + ] = 0, (28) 
l/I14 l/I24 P + -Pz l/I21 l/I22 l/I43 l/I44 P - -Pz 
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formed by adding together both sides of equations (17d) and (18), serves to define 
t/J13' t/J23' t/J14 and t/J24 in terms of the other t/J/lV; hence making these four bispinor 
components non-essential. By substituting for the t/J /lV from the definitions 

A/l = i( Cy /l)~Pt/J p~/4f.-l, F/lV = - (CI /lv)~Pt/J p,,/4, I/lV = (Y/l Yv - Yv Y/l)/2i, 

where Fij = 8ijkBk and Fk4 = -iEk (see Lurie 1968), equation (28) is found to be 
equivalent to B = curIA and 'l.E = -f.-l2Ao (i.e. equations 1(122a) and 1(122d) 
in the book by Lurie 1968). 

When t/J"p is antisymmetric the Bargmann-Wigner equations describe spin 0 
particles because all t/Jii are zero and t/J12 and t/J34 each have zero spin components 
along the z axis. Thus consider the 16 equations contained in (16) with t/J ~p = - t/J p,,' 
Relationships between the various components are easily derived; for example,. 

(-E+f.-l)t/J12 = (E+f.-l)t/J34 (t/J anti symmetric) . (29) 

Since t/J12 and t/J34 both obey the Klein-Gordon equation, the relationship (29) 
can be recaste into 

Et/J12 = tf.-l-· lp2(t/J12 + t/J34)+f.-lt/J12 , 

Et/J34 = -tf.-l-1p2(t/J12+t/J34)-f.-lt/J34 

(30a) 

(30b) 

by multiplying it throughout by (-E+f.-l) or (E+f.-l) and replacing E2 by p2+f.-l2. 
Then t/J12 and t/J34 are equivalent to t/Jl and t/J2 in the spin 0 field equations 1(19a) 
and 1(19b) of the text by Lurie (1968). 

If no conditions are imposed on the symmetry of t/J~p then the Bargmann-Wigner 
equations give relationships between t/Jll' t/J12, t/J21' t/J22 and t/J33' t/J34, t/J43, t/J44 which 
are identical with equations (2la) and (21b) with J2t/J12 and J2t/J34 replaced by 
(t/J12 + t/J21)/J2 and (t/J34 + t/J 43)/J2 respectively, together with equation (29) with t/J12 
and t/J34 replaced by t(t/J12 - t/J21) and t(t/J34 - t/J 43) respectively. 

Just as the spin 1 equations (21) can be derived by taking second induced matrices 
of the 2 x 2 matrices in the Dirac spin 1/2 equation, so the spin 0 equations (30) 
can be derived by taking the second compound matrices. In fact, the decomposition 
of the direct product of a 2 x 2 matrix with itself into its second induced matrix 
and second compound matrix (Littlewood 1958) is directly related to the repre
sentation decomposition D(t) x D(t) = D(l)El3D(O) (see Appendix 2). 

4. Sylvester's Theorem and Induced Matrices 

The 2jth induced matrices that occur in equations (4) can be expanded in terms 
of spin matrices. To any rotation by an angle () about a unit vector n in three-space 
there is associated a two-component spinor transformation given by the matrix 
cost() -in.O'sint(). The associated (2j+ 1) component spin or, having the form 
described in Section 2 above, undergoes a transformation given by the matrix 
[cost() -in. 0' sint()][2j] (see e.g. Appendix II of Rose 1957). Also, the (2j+ l)th 
dimensional rotation matrix is well known to be equivalent to exp( -i()J. n), where J 
denotes the three spin-j matrices that have elements given by 

(jm± llJ± Ijm) = {(j+m)(j±m+1)}t and (jm I Jz Ijm) = m, 
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where J ± = Jx ± iJy and all other elements are zero (cf. Ch. IV of Rose 1957). Thus 
the identity 

[cos t8 - in • a sin W][2j] = exp( - i8J • n) (31) 

follows and has a form somewhat akin to De Moivre's theorem. The matrix function 
exp( -i8J.n) can be written 

L exp( - i8m r)Pr , where +j / Pr = JJj(ms-J.n) Q(ms-mr), (32) 

as a direct consequence of Sylvester's theorem (Gantmacher 1960). Here mr and ms 
are eigenvalues of J. n (i.e. spin components along the Z axis) such that mr "# ms. 
The factor Pr is the projection operator for the spin component m" so that the 
expression (32) amounts to a suitably weighted sum of projection operators, i.e. 
(32) is the spectral decomposition of the rotation operator. Similarly, the formula 

[cosht¢ +n.asinht¢][2j] = exp(¢J.n) (33) 

holds, as can be seen by substituting i¢ for 8 in equation (31) and noting that 
cos i¢ = cosh ¢ and sin i¢ = i sinh ¢. 

All the formulae that relate rotation matrices to spin matrices cannot be fully 
reviewed here; each author seems to have his own preference. For example, 
Torruella (1975) obtains separate formulae for integer and half-integer spin by 
inverting the power series for exp(i8 J. n). Weber and Williams (1965) express 
exp(iZ8) in terms of complex polynomials in Z and then place Z = J. n. Weinberg 
(1964) proceeds by expressing the hyperbolic functions coshZ8 and sinhZ8 as power 
series in sinh8 to obtain a relationship between his n(j)(q) matrix, for a Lorentz 
'boost', and J. q. The set of values for n(j)(q) given in his Table I are equal to 
[qo -q.al2 j], that is, [cosh 8 -q.asinh8][2j] where cosh8 = qolm. In a similar 
manner, Weaver et al. (1964) also consider Lorentz 'boosts' and their quantity 
St = exp[(s8(X .PIP)arctanh(PIE)], where 8 is the operator i Otll i at I, is given by 

St = [cosht8 +(8(X.PIP)sinht8][2j] , 

where cosh 8 = Elm and the superfix [2j] now means taking the 2jth induced matrices 
of a.PIP into which (X.PIP is decomposable. The values of S(P) given in their 
Table I can then be obtained by replacing 8 by their /3. 

The 2jth induced matrix of P. a that occurs in the general equations (4) can be 
calculated in terms of J. P by using (31) and (32). Thus, putting 8 = nand n = PIIPI, 
we have 

[P. a][2j] = (i I P 1)2j exp( - in J. PIIPI). 

Hence 

+j / [P.a][2j] = (iIPD2j~exp(-inmr)msIt (ms-J·PIIPI) Q(ms-mr), (34) 

and exp( -inmr) can be simplified to (_l)mr and some (I P 1)2j terms cancelled. However, 
the left-hand side of equation (34) is much easier to calculate than the right-hand side 
(see Appendix 2), so there is no cause to make explicit use of this equation. 
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Appendix 1 

The nomenclature generally used in the text is that given by Lurie (1968): 

h=c=l, all = a/axil = ('\7, -ia/a t), 

_ [0 -iO'i] 
Yi - . , 

10'i 0 Y4 = [~ ~I]' 
~IlV = (YIlYv -Yvyll)/2i, [

0 
c-

10'2 

i~2] . 
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Appendix 2 

Consider the spin or equation 

[: ;][;:] = [;:] , (AI) 

where the nonsingular 2 x 2 matrix transforms (l/Il,I/IZ) into (Xl' Xz), and suppose 
we wish to determine how the quadratic terms I/Ii, I/Ill/lZ and I/I~ transform. The 
expanded form of equation (AI) is 

al/ll +cl/lz = Xl' 
bl/ll +dl/lz = Xz, 

and taking the quadratics of both sides gives 

(al/ll +cl/lz)Z = xL 

(al/ll +cI/l2 )(bl/ll +dl/lz) = Xl Xz, 
(bl/ll +dl/lz)Z = x~· 

These equations can be written in matrix form as 

l aZ .J2ac C

Z 
Jll/li J l xi J 

.J2ab (ad+bc) .J2cd .J21/111/lZ = .J2Xl Xz , 

bZ .J2bd d Z I/I~ X~ 

(A2a) 

(A2b) 

(A3a) 

(A3b) 

(A3c) 

(A4) 

provided, of course, that a, b, c and d are numbers and not operators. The 3 x 3 
matrix in equation (A4) is the second induced matrix of the 2 x 2 matrix in (AI). 
Notice that the definition given here differs slightly from that given by Littlewood 
(1958) because of the .J2 factor in the wavefunction. More generally the 2jth induced 
matrix is generated from the set of equations 

(al/l l +cl/lz)i+m(bl/ll +dl/lz)i-m = X{+mxt m, (A5) 

with + j ~ m ~ - j. 

With [2j] as the symbol for the 2jth induced matrix then (c;. p)pn, which occurs 
in equations (4) of Section 2, can be readily determined from equation (A5). The 
formula for the mm' element is 

(c; .p)~~) = (_ r'-m L (- y{(j+m)! (j -m)! (j +m')!(j-m')!}"t 
s s!(j-s-m')!(j+m-s)!(m'+s-m)! 

x p~+m-s ( _pz)i-m'-s(_ p +)m'+s-m p~ , (A6) 

with + j ~ m (or m') ~ - j. The element of the first row and first column is labelled 
by m = m' = j and the values of m and m' decrease down the columns and along 
the rows respectively. The sum over s is between ± 00 but is limited by the usual 
definition lin! = 0 for n < O. The formula (A6) should be compared with equation 
(II. 15), Appendix II, of the text by Rose (1957), for the elements of the general 
rotation matrix. 
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There is often great simplicity in manipulating induced matrices. For example, 
if the 2 x 2 matrix A has eigenvalues Al and A2 then (A)[2j] has eigenvalues A{+m A1-m, 
with + j ;::, m ;::, - j. Thus the eigenvalues of (a. p)[2j] are (I P D2j and - (I P D2j, 

each being j+t degenerate for half-integer spin and being j+ 1 and j degenerate 
respectively for integer spin. Similarly if Q transforms A to the diagonal form QAQ 
then Q[2j] will diagonalize A[2j]. 

The direct product of a matrix with itself is reducible to the second induced 
matrix and the second compound matrix (Littlewood 1958). This is related to the 
decomposition 

D(-!) x D(!) = D(l) ElJD(O) . (A7) 

In order to make the connection more precise consider the, equations 

[: ;] [~:] = [~:] , [: ;] [~~] = [:~]. 
Hence 

(al/ll +et/l2)(at/l~ +et/lz) = Xl X~, 

(at/ll +et/l2)(bt/l~ +dt/lz) = Xl X2, 

(bt/ll +dt/l2)(at/l~ +et/l2) = X2X~, 

(bt/ll + dt/l2)(bt/l~ + dt/l2) = X2 X2 , 

or in matrix form 

a2 ae ea e2 t/ll t/I~ Xl X~ 
ab ad eb cd t/ll t/l2 Xl X2 

= 
ba be da de t/l2 t/I~ X2X~ 

b2 bd db d 2 t/l2 t/lz X2X2 

(A8) 

(A9a) 

(A9b) 

(A9c) 

(A9d) 

(AW) 

where the 4 x 4 matrix is the direct product of the 2 x 2 matrix in equations (A8) with 
itself. By elementary manipulations equation (AlO) is equivalent to 

a2 .J2ae e2 0 t/ll t/I~ Xl Xl 

.J2ab (ad+be) .J2ed 0 (t/ll t/l2 +t/l2 t/lDI.J2 (xl X2 + X2 x~)1.J2 
b2 J2bd d 2 0 t/l2 t/l2 X2X2 

0 0 0 (ad-be) (t/ll t/l2 -t/l2 t/lDIJ2 (Xl Xl - X2 xl)/.J2 

where the 4 x 4 matrix has now been reduced to the 3 x 3 second induced matrix 
and the 1 x 1 second compound matrix. The three factors t/ll t/I't, (t/ll t/l2 +t/l2 t/ll}/.J2 
and t/l2 t/l2 transform as symmetrical second-rank spin or components and 
(t/ll t/l2 -t/l2 t/I~)1.J2 transforms as an antisymmetrical second-rank spinor. Thus 
where the 2 x 2 matrix is the spin 1/2 rotation matrix Dm then the decomposition 
(A 7) corresponds to the decomposition of the direct product into the second induced 
matrix and the second compound matrix. 
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