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Abstract

Existing definitions of heat in open systems are considered with the aim of providing acceptable
physical motivation in restricted circumstances. The extent to which these definitions are independent
of the usual concept of heat in closed systems is clarified: they all have the feature that internal
energy may be transferred by convection in workless adiabatic processes. The global definitions
are compared with various definitions of heat flux in irreversible thermodynamics. As the domain
of applicability of these definitions is wider than that of equilibrium thermodynamics, it is suggested
that-a minimal check for any definition of heat flux be that it agree with the global definition of
heat flow between equilibrium states in as wide a range of circumstances as possible.

1. Introduction

The question of how best to define heat transfer in open systems is not yet settled,
although it was first raised many years ago. That a real generalization of closed-
system thermodynamics is required has been emphasized by Miinster (1970): thus
it is possible to increase the internal energy of an open system without doing work
and without heat flow simply by adding more mass at the same temperature and
pressure under adiabatic conditions. It is therefore expected that the usual version
of the first law of thermodynamics for closed systems, namely dU = dQ+dW, will
not be valid for open systems. Despite this, it is true that open systems can often
be analysed by considering the motion of a fixed mass of the working fluid, as is
done in engineering texts. However, this reduction to closed system thermodynamics
can only be made after agreement has been reached on a suitable definition of heat.

For one-component systems, an agreed definition of heat is used by engineers for
flow problems (see e.g. Rogers and Mayhew 1967). For multicomponent systems,
Gillespie and Coe (1933) proposed, and partially motivated, a definition which
reduces to the engineering version when the number of components is unity. In
Sections 2 and 3 below we attempt to provide physical motivation for these definitions.
In doing this, a convention is established that the heat flow into an open system is
zero when the system, its supply tank and discharge tank are all surrounded by an
adiabatic enclosure. This convention is partly a consequence of conventional notions
of heat and partly an arbitrary device, depending on the physical conditions. For
simplicity, all systems considered here are assumed to consist of one phase only.

In irreversible thermodynamics, which is usually formulated as a local rather than
a global theory, there exist several definitions of heat flux. That due to Prigogine
(1947; see also Glansdorff and Prigogine 1971) is most widely used, although many
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authors employ several non-equivalent definitions (see e.g. de Groot and Mazur 1962),
while Haase (1953, 1969) uses a different definition, the so-called reduced heat flux,
exclusively. The Prigogine definition of heat flux is usually justified by showing that
the balance equation for internal energy per unit mass, following the centre of mass
motion, agrees with the second law of thermodynamics for closed systems. But the
balance equations of irreversible thermodynamics apply to open systems also. When
comparisons with the global definition of heat are made for open systems, it is found
that Prigogine’s heat flux is consistent with the global definition only for systems of
one component, but Haase’s reduced heat flux is consistent in all cases.
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Fig. 1. Thermodynamic process for a one-component fluid involving mass
addition: (a) To the system, which is the fluid of the main chamber, (b) fluid
is added by removing the common wall between the two chambers, and then
(c) work and heat are supplied to the resulting closed system.

There are additional tests that can be used to discriminate between the various
definitions. Both the Prigogine and the Haase definitions of heat flux are invariant
under Galilean transformations. However, Haase’s definition is also superior in that
it is invariant under changes of standard values for the partial internal energies and
entropies (Tolhoek and de Groot 1952).
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2. Open One-component Systems

We will take the global definition of heat to refer only to a process connecting
equilibrium states. No progress can be made until we have some notion of adiabatic
processes for these systems. We choose to define adiabatic processes in these systems
by requiring that the process for the original system plus its infinitesimal added mass,
which together form a closed system, is adiabatic in the usual sense. With this
definition it is possible to have workless adiabatic processes which increase the
internal energy (see Fig. 1). Hence for open systems the first law of thermodynamics
must be of the form ‘

' dU = dW+dQ+dR, €))

‘where dW is work done on the system, dQ is heat added according to the above
convention and dR accounts for changes by addition of mass. Before dR can be
specified we need to know the thermodynamic states of the original system and the
added mass. Each state can be specified by two intrinsic variables, namely tem-
perature and pressure, with values 7 and P for the system and 7' and P’ for the
added mass. Furthermore, the initial state in each system is in equilibrium and
therefore homogeneous, so the internal energies are U(T, P) and u(T’,P")dM for
the original system and the added mass respectively.

Three kinds of processes may be distinguished. In decreasing order of generality,
they are: :

(A) completely irreversible;

(B) mass-reversible, i.e. addition of mass takes place reversibly but the subsequent

change is irreversible;
(©) completely reversible.

Even in the general case A, a simple expression for dR follows by treating the original
system plus added mass as a closed system, as suggested by Gillespie and Coe (1933).
The internal energy change of this closed system in the process of Fig. 1 is
(U+dU)—U —u'dM, so

dU —v'dM = dW+dQ (case A) 2

is the normal statement of the first law for this closed system. This is of the form
(1) with dR = u’'dM. For mass-reversible processes, the temperatures and pressures
of the two systems before addition must be equal. This is the case with continuous
flow systems, although the conventional analysis of such systems is more general in
that the initial and final states are not equilibrium states. Thus the added mass has
the same intrinsic variables as the original system; in particular ¥’ = u, so

dU = dW +dQ +udM (case B). 3)

The technique of changing the boundary shows that no extra generality in the
theory is required for open one-component systems. This can be verified explicitly
for mass-reversible systems, where the total system (original system plus added mass)
is initially homogeneous. We then expect that the work done and the heat entering
per unit mass, namely

dw=dW/M  and dg = dQo/M, ()]
obey the relation
du = dw +dgq, )
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which is the first law for a closed system. This result follows immediately from
equation (3).

For completely reversible processes, the work done can be expressed in terms of
state variables. As the volume change is (V+dV)—V —vdM, we have

dW = —P(dV —vdM) = —PMdv, 6)

showing that any work done necessarily changes the specific volume v. Addition
of mass at the same density is a workless process. Substitution in equation (3) gives

dU = —PdV +dQ +hdM (case C), ‘ ©)

where 4 is the enthalpy per unit mass, that is, # = u+ Po.

Another way of expressing equation (7) is to write dg = T'ds, which follows by
using equations (4). This is a generalization of the Carnot-Clausius equality, and
has the attractive feature that heat flow necessarily increases the entropy density.
Thus in homogeneous one-component systems the mass is almost an irrelevant
variable; all changes can be described by using the laws of closed-system thermo-
dynamics on thermodynamic densities. This situation does not persist for multi-
component systems. :

The order of operations detailed in Fig. 1 is not important for an infinitesimal
process. The system can suffer an infinitesimal closed change before mass is added
rather than afterwards, the difference being of second order in infinitesimal
quantities. The same equations can also be shown to apply to the case of mass loss
if dM is negative.

3. Open Multicomponent Systéms

For simplicity we consider multicomponent systems without external forces and
chemical reactions, although the extensions required to include these are trivial.

For the completely irreversible case A, the addition of mass dM of a fluid with
intrinsic variables 7', P’,x’ (where the x = x,,..., x, are the mass fractions of the
n components) to a fluid of mass M in state T, P, x leads to a first law of form (1) with

dR = Y ujdM;, ®

where u; is the partial internal energy per unit mass of component i, dM; is the added
mass of that component, and the convention for defining heat is as proposed in
Section 2. The usual definition of partial quantities is used, namely

u; = QUIOM)rppr  (M"={M;;j#i}).

For a mass-reversible process (case B), each component must be added reversibly,
with additional irreversible changes on the closed systems formed after each addition.
Again, the order of operations is not important if the processes are infinitesimal.
There are various physical arrangements for adding components reversibly, but the
most convenient for our purposes is shown in Fig. 2. The added masses in each
of the vertical cylinders are all at the same temperature, pressure and chemical com-
position as the main system, but each cylinder i (i = 1,...,n) is fitted with a membrane
permeable only to species i. Each vertical piston is used to displace an infinitesimal
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‘mass dM; into the main chamber. Subsequent changes of a closed-system variety
can be carried out by clamping these pistons and using the piston of the main chamber.
Thus u} = u; and o} = v;, where u; and v; are values for the main chamber, and so

dU =dQ +dW + Y u;dM;  (case B). )

dQ

Fig. 2. Process for a general change of state in a multicomponent fluid. Masses
dM,,dM,,... of fluid at the same temperature, pressure and composition as the fluid of
the main chamber are added through semipermeable membranes 1,2,.... The net work
done by all pistons is dW, and heat dQ enters through the surrounding wall.

For a completely reversible process (case C), the work done is

aw = —P(dV —Xi:v,-dM,.) (10)

and hence
dU = —PdV +dQ +_Z h;dM; (case C), (11)

where h; = u;+ Po; is a partial enthalpy. This is the definition suggested by Gillespie
and Coe (1933). There is an alternative form, namely

dQ = TZMidsi'

Note that the result (11) is different from what one gets by using the process of
Fig. 1 with a multicomponent fluid. This would lead to equation (11) with the last
term replaced by hdM, where

h=M"1Y hM, 12)

is the mean enthalpy per unit mass. The difference between the two terms is just
the quantity 4,(dM; — M;dM/M) summed over each component. In fact both results
are correct in the context of Fig. 1, because that process merely adds more fluid of
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the same composition, that is, dM;/dM = M,;/M. This illustrates an important point,
namely that the processes considered must be sufficiently general to include all
possible changes of state. To include composition changes and to carry them out
reversibly requires the use of semipermeable membranes, as was realized by van’t Hoff.
Other physical arrangements may be used to change composition, either reversibly
or not. However, equation (8) remains true whatever apparatus is used. For mass-
reversible processes, an alternative arrangement is to fill the vertical cylinders of
Fig. 2 with infinitesimal amounts dM,,dM,, ... of pure components of types 1,2, ...
and adjust the pressures in those cylinders to the membrane pressures Py, P,, ... of
the corresponding components in the main chamber. The temperatures in all chambers
are to be equal. With the pure fluids prepared in this way, they will be in thermal,
mechanical and chemical equilibrium with the main fluid mixture, and by pushing
each vertical piston down to zero volume the mixing is again carried out reversibly.
However, the work done, in general, is not given by equation (10). The work of
mixing is formally equal to
Y P,o?(T, P)dM, (13)
12

where o? is the specific volume of the pure component i. This should be compared
with the result Po(T, P, x)dM; appearing in equation (10). Formally, the membrane
pressures are determined from the condition of chemical equilibrium, which for
component i is

/’Li(Ta P:» X) = Iu?(T7 Pl) (14)

in terms of the chemical potentials (uf is actually the Gibbs energy per unit mass
for pure 7). The specific volumes are also related through the expressions

v; = (a/“ti/aP)T,xa U? = (Ow;/0P)r, 1s)

so that equations (14) and (15) determine P; and »¢ in terms of the state variables
of the mixture. For a perfect gas mixture one can show that Pv; = P;»¢, but in
general this is not true and the two arrangements lead to different expressions for
‘the heat increment.

We are thus confronted with the unsatisfactory situation that, even with the con-
vention of Section 2 for adiabatic processes, the expression for heat in open multi-
component systems depends on the process chosen, even in the purely reversible case.
To introduce some order into this situation, it is useful to distinguish the following

two types of processes.

(1) Processes of the first kind: the added fluid is at the same temperature, pressure
and composition as the original fluid.

(2) Processes of the second kind: the added fluid is in a different state.

Those of the first kind imply that the thermodynamic variables are continuous across
the boundary of the original system. Thus it is these processes that can be compared
with those of irreversible thermodynamics, where the existence of local equilibrium
at each point of the fluid is assumed. Local equilibrium implies that the intrinsic
thermodynamic variables are continuous functions of position.

If one is prepared to accept the restriction to processes of the first kind, then it
appears likely that the arrangement of Fig. 2 is unique, at least for mass-reversible





