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Abstract 

An analytical study is made of the accretion of planetesimals by a planetary embryo within the 
framework of a modem Laplacian theory for the formation of the planetary system. The equation 
of motion of the particle, which is initially comoving ahead of (or behind) the growing planet on 
the same circular Keplerian orbit about the Sun, is examined both in the presence and abseflce of a 
gaseous torus which is also centred on the same mean orbit. The gas density in the torus is taken to 
be uniform and the drag exerted on the particle is assumed to vary as the square of the relative 
velocity, corresponding to motion at high Reynolds number. It is found that the gas acts as a damper 
to the coriolis acceleration due to the Sun in the rotating frame of reference of the embryo, which 
tends to pull the particle off the mean circular orbit, thus preventing accretion. In the absence of 
the gaseous drag, less than 1 % of particles lying well inside the so-called sphere of gravitational 
influence of the embryo are accreted, whilst if the gas drag is included nearly all of these particles 
are captured. In all instances the accreting particles impart a spin angular momentum to the embryo 
which is prograde with the orbital motion. The actual spin rate decreases with increasing gas drag 
and is found to be lowest for the innermost planets Mercury and Venus, where the gas density is 
greatest. A more detailed numerical study is probably required to determine the rotational period 
of larger planets and planetary cores which possess an outer atmosphere, not included in the p$ent 
study, and where nonlinear effects in the particle's equation of motion cannot be ignored.' 'r.' 

Introduction 

In 1796 the celebrated French mathematician P. S. de Laplace proposed that the 
solar system' had formed through condensation from a concentric system of fluid 
rings which were shed by the primordial Sun. The Sun was originally supposed to 
have been a huge diffuse cloud having dimensions exceeding the orbit of Neptune, 
as pictorially illustrated in Fig. 1. As the cloud cooled off it contracted inwards and 
proceeded to spin faster on its axis of rotation owing to the conservation of total 
angular momentum. Eventually the stage was reached when the centrifugal force 
at the equator overcame the gravitational force there and a ring of matter was shed 
at the present orbit of Neptune. The process of successive contraction and ring 
shedding repeated itself at the orbits of each of the planets until the Sun reached Its 
present size, still spinning quite rapidly. Laplace did not specify the physical mechanism 
whereby the nebula discretely abandoned its fluid rings, nor did he attempt to explain 
how the planets formed from these rings. Nonetheless, the hypothesis was conceptwilly 
simple and attractive and it did account for the broad physical structure of the 
planetary system, including the near circularity of the pla,netary orbits, as well as 
their common motion around the Sun. , .. , .• 
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During the second half of the nineteenth century, the various unexplained features 
of Laplace's theory attracted the criticism which eventually led to its downfall. 
Babinet (1861) drew attention to the great discrepancy which existed between the 
observed distributions of mass and angular momentum in the solar system and the 
values which should exist if the Sun had behaved in the manner proposed by Laplace. 
In addition, Fouche (1884) pointed out that the Sun would have been spinning with 
a period of only a few hours and not the 25 days which is presently observed. Various 
other weaknesses were also found in the hypothesis, as have been recently reviewed 
by Brush (1978). The final overthrow of the nebular hypothesis appears to be largely 
due to the efforts of the Chicago scientists Chamberlin (1900) and Moulton (1900). 
In order to account for the direct rotation of the known planetary spins, Laplace 
had assumed that the rings were liquid in composition and rotated with a uniform 
angular velocity, just like a solid body. Chamberlin, who was a geologist, correctly 
pointed out that the Earth could not have formed from such material, whilst his 
mathematical colleague Moulton proved that it would not be possible for a uniformly 
rotating ring to coalesce into a single body. These two scientists proceeded to develop 
a planetesimal hypothesis in place of the nebula hypotheses. In fact, Laplace was 
aware (cf. Maxwell 1859) that a uniformly rotating ring was dynamically unstable 
and would tend to break up by precipitating itself onto the surface of the Sun. 

A Modern Laplacian Theory with Supersonic Convective Turbulence 

Recently I have attempted to construct a modern Laplacian theory taking into 
account new astronomical data relating to star formation and the properties of young 
forming suns (Prentice 1978a, 1978b). The most important of these data concern 
the T Tauri stars and the inference from the violent surface activity observed in these 
stars that there may exist a large supersonic turbulent stress <PI v~> in their interiors 
which has a value many times the local gas pressure pf!IlTlp. By incorporating this 
additional stress into the structure equations one can understand how a collapsing 
gas cloud can shed a discrete system of concentric gaseous rings, each of about the 
same mass m, at orbital radii Rn (n = 0,1,2, ... ) which form a geometric sequence 
given by 

RnlRn+1 = (1 +mIMf)2. (1) 

Here M and f denote the mass and the coefficient of the moment of inertia of the 
contracting cloud, given by f = II MR; where I is the axial moment of inertia and 
Re the equatorial radius. For a strongly turbulent cloud, the interior mass distribution 
is very centrally condensed, with f = o· 01-0·02, whilst the mass m of the disposed 
rings is very small compared with the envelope mass M. Typically we find 
m ~ 0·003 M = 103 M(JJ (M(JJ. being the Earth mass) on setting M = Mo (the 
solar mass). This result alone allows us to resolve the angular momentum difficulty 
raised by Babinet (1861). 

As regards Fouche's (1884) objection, the present slow rotation of the Sun is 
by no means indicative of the initial rotation that would have been present at the 
time of the Sun's formation. Observations of T Tauri stars suggest that these objects 
have very high equatorial velocities, up to 100 km s -1, which imply that these bodies 
are rapidly rotating (Herbig 1962). This fact, together with the evidence for the exist
ence of a strong large-scale magnetic field in the early Sun, suggests that the Sun 
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may have given up any initial rapid spin through an interaction between the magnetic 
field and a strong solar wind during the final stages of the protosun's contraction 
from radius 10 Ro to Ro (Freeman 1978). This electromagnetic interaction and the 
subsequent transfer of angular momentum would become important only during 
the final stages of the contraction from radius '" 10 Ro to Ro when the temperature 
at the photo surface was high enough for the gas to ionize (T ~ 3500 K). 

Gaseous ring 
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Fig. 2. Schematic illustration of the gravitational settling of condensed particles onto 
the mean circular Keplerian orbit of the gaseous ring to form a concentrated orbiting 
stream of planetesimals. [Reprinted with permission from Prentice 1974.] 

In this paper, attention is concentrated on the other principal objection which 
was cast at the Laplacian hypothesis, namely how the planets managed to accrete 
from the system of gaseous rings. In the modern Laplacian theory (Prentice 1978a, 
1978b) the rings are not uniformly rotating liquids, as Laplace had envisaged, but 
instead are gaseous and have differential orbital angular velocity (w) and density 
(p g) distributions given by the equations 

w(s,z) = W nR;;/S2, pis,z):::::: Pnexp(-trx~2/R;;). (2) 

Here (s, ¢, z) denote cylindrical polar coordinates defined relative to the axis of the 
nth ring and ~ is the distance measured off the mean orbit s = Rm z = 0 of this 
ring where the angular velocity Wn equals the local Kepler value and the gas density 
Pn is a local maximum; that is, 

Wn = (GM/R~}!, Pn = rxm/4n2 R~ , (3) 
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and IX = JlGM/fYlTnRn ~ 0(400), where Tn is the temperature of the ring which is 
assumed to be nearly uniform. These gaseous rings are stable against fragmentation 
or coalescence since their mass is so much smaller than that of the central governing 
Sun (cf.Polyachenko and Fridman 1972). 

After a gaseous ring has been shed by the protosun, the various chemical species 
whose condensation point lies above that determined by the prevailing temperature 
and pressure proceed to condense out of the gas forming fine solid grains. These 
grains then migrate under the influence of the Sun's gravitational force and the orbital 
centrifugal force as well as gaseous drag onto the mean circular orbit Rn of the gas 
ring where the gas and grains have a common orbital angular velocity. That is, 
the differential velocity distribution of the gas, coupled with gaseous drag, focuses 
the condensate material into a single well-defined circular Keplerian orbit to form a 
concentrated stream of rocks or ices, as schematically illustrated in Fig. 2 (Prentice 
1974, 1978a; Hourigan 1977). Alfven and Arrhenius (1976) have also drawn attention 
to the importance of concentrating the planetary material into 'jet streams'. They 
have argued on dynamical grounds that subsequent accretion may take place in the 
absence of gas drag. 

Next, Hourigan and Prentice (1979) have shown that, as soon as the mass density 
of the condensate stream exceeds a critical value, it will become gravitationally 
unstable and break up to form isolated groups of self-gravitationally bound masses 
called planetesimals. That is, we have a Jeans-type instability mechanism operating 
where the self-gravitational energy of the condensate stream first exceeds its total 
'thermal' or random kinetic motion. Gaseous drag serves to dampen out this random 
excess particle motion as well as to re-direct wandering particles and planetesimals 
back onto the mean Keplerian orbit of the ring (Prentice 1978a). 

Consider now the evolution of the fragmenting stream. Since particles are 
preferentially attracted towards regions of higher mass density, we have a situation 
where a statistical runaway may occur in the growth of the largest planetesimal 
group. Thus if one group is initially slightly more massive than any others as a 
result of spatial inhomogeneities in the line density distribution of the condensate 
stream it will compete for the remaining planetesimals at a faster rate, resulting 
perhaps in the emergence of a single embrionic planetary body at each orbital radius 
Rn- As long as the gaseous ring remains intact and so acts to confine the reservoir 
of condensate material on the mean orbit of the ring, as well as supplying fresh grain 
material, this embryo may eventually swallow up all of the other slower growing 
planetesimals in each ring. Hourigan (1977) has shown that, as soon as the gaseous 
ring disperses, the stream of planetesimals also disperses both directly through being 
dragged away by the gas, as is the case for the smaller particles, and through collisional 
interactions with one another, leading to a broadened stream of scattered planetesimals 
similar to the asteroidal belt. The gaseous rings therefore playa crucial role in the 
planetary aggregation process. 

In this paper we analytically examine in detail the possible capture by a planetary 
embryo of mass ME and radius RE of a particle of mass m which is initially comoving 
on the same mean circular orbit of the gas ring within the so-called sphere of gravi
tational influence of the embryo, given by 

R J = Ro(ME/3M)t, (4) 
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where M is the mass of the central body (sun). For the Earth we find R J = 0·01 Ro 
= 235 R EEl whilst, for an icy embryo of mass 10 M EEl and density PE = 1 g cm - 3 

at Jupiter's orbit, R J = 0·0216 Ro = 690 R E • 

We assume that we have 

m ~ ME ~ M, (5) 

so that the sun dominates the motion of the embryo which moves on the circular 
orbit of the gas ring undisturbed by the motion of the particle. We also compute 
the rotational period of the embryo on the basis of the spin angular momentum 
imparted to it by the accreting planetesimal material. 

Wo 

Sun Ro 

Fig. 3. Rotating coordinate system defined in the orbital plane of the planet. 
The dimensionless coordinates (x, ()) of the particle moving in this plane are 
indicated. 

Equations of Motion 

Fig. 3 shows the geometry of a particle P in a coordinate system which is centred 
on a planetary embryo and rotating about a sun with a Keplerian angular velocity 
Wo appropriate to the distance Ro. If Yl and Y2 denote the vector positions of P 
relative to the sun and the embryo, the absolute equation of motion of the particle 
reads 

;:1 = -(GMfrih -(GME/d)Y2 +/0' (6) 

where 10 is the acceleration due to gas drag. We suppose the particle to be much 
larger in radius a than the mean free path length Ag of the gas, which is given by 

Ag = 2 X 10- 9 p;l cm = 0·06 cm (Earth's orbit), (7a) 

= 20 cm (Jupiter's orbit), (7b) 

for a gas of solar composition, and also suppose the particle to have a Reynolds 
number Re ;C; 10 so that the flow is turbulent. In this case 

10 = Y21 vg -r1 1 (Vg-rl) ' (8a) 

where 

Y2 = iCopg/psa (8b) 

is the inverse gas drag length, CD ~ o· 3 being the drag coefficient (Goldreich and 
Ward 1973). As long as the particle remains fairly close to the mean orbit Ro of 
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the gas ring, Pg is nearly constant and Y2 may be regarded as a constant too. Equation 
(8a) is also valid for small particles (a ;5 Ag) which are moving supersonically, though 
the form of Y2 is somewhat different. In equation (8a) the local orbital velocity Vg 

of the gas is given by 
~ 2 ~ 

Vg = sw(s,z)q, = (woRo/s)d>, (9) 

where .j; is the unit vector tangential to the circular orbit passing through P. 
We next introduce the dimensionless coordinates (x,8), where Ro x denotes the 

deviation in plane polar radius of the particle from the mean orbit s = Ro, and 
8 is the difference in polar angle 4> between the particle and the embryo subtended 
at the sun (see Fig. 3). We further assume that the particle is initially moving in the 
orbital plane of the embryo (z = 0). In this case, equations (6), (8) and (9) ensure 
that the particle always remains in that plane and the planar equations of motion 
separate into the dimensionless forms 

x-(1+X)(WO+8)2 = -w~/(1+X)2-BWMx +2sin218)/d3 -kX(.XZ+u2)t, (lOa) 

(l +x)8+2x(wo+8) = -Bw~(sin8)/d3 _kU(X2+U2)!-, (lOb) 

where 
d = {x2+sin28 +4sin218(x +sin218)}t, (lla) 

U = (wo+8)(1+x) -wo/(l+x), (lIb) 

B = ME/M, k = Y2RO' (llc) 

Equations (lOa) and (lOb) are too nonlinear to admit any analytic solution. If, 
however, we assume 

x ~ I, 8 ~ I, 8 ~ Wo, (12) 

the equations may be linearized, yielding 

x -2wo8 = W~X{3-B(X2+82)-3/2}-kX{X2+(8 +2woX)2}t, (13a) 

8 +2wox = -Bw~8(X2+82)-3/2_k(8 +2WOX){X2+(8 +2WOX)2}!-. (13b) 

It follows from equation (13a) that the gravitational attraction of the embryo exceeds 
the difference between the sun's attraction and the orbital centrifugal acceleration 
provided the particle lies within the radius 

d[ = (tB)t, (14) 

the same as given earlier (equation 4). Having an initial distance do <A is not, 
however, a sufficient condition for capture, as we shall see below. 

Solution for Aximuthal Motion 8( t ) 

We now examine the analytic solution of the linearized equations of motion (13) 
for the case of physical interest where the particle initially lies an angular distance 
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00 ahead of (or behind) the embryo on the same circular Keplerian orbit; that is, 
at time t = 0, 

x(O) = 0, x(O) = 0, 0(0) = 00 , 0(0) = 0, 

and 

O~ ~ le, 

in view of equation (14). Suppose now we make the further assumptions 

x2 ~ 02 , x2 ~ 02 , 2woX ~ O. 

In this case, we find that equation (Bb) simplifies to 

{j = - eW6 0 - 2 + kOz , 

(15a) 

(15b) 

(16) 

(17) 

noting that 0 is negative during the first approach to the embryo. This equation 
may be readily integrated to yield the solution 

( rOo ) t 
OCt) = -wo(2e)!exp(kO) Jo O-Zexp( -2kO) dO . (18) 

This solution may be integrated only in the regimes of very low and high drag 
determined by the dimensionless parameter kOo. 

Case (i), keo ~ 1 

In this case we have from equation (18) 

O(t) ;:::: -wo(2e)t(0-1-001)t, (19) 

which gives 
Wo t = (06;2e)t[tn - arcsin(O/Oo)t + {(0/00)(1- O/Oo)}!]. (20) 

This is a free-fall solution. The particle reaches the point 0 = 0 after a time 

to = (n/2wo)(0~/2e)t ~ 2n/wo = 1 yr (at Earth's orbit). (21) 

In view of the assumptions (12), the above solution is only valid provided we have 

i OJ. (2e)2 ~ 0, 00 ~ 1, (22) 

that is, provided the particle does not lie too close to the embryo, or otherwise the 
nonlinear terms cannot be ignored. 

Case (ii), kOo ~ I 

In this case equation (18) simplifies to 

o ;:::: -wo(e/k)tO- 1 (23) 

which has solution 
O(t) = 00{1-(2wo/06)(e/k)tt}t. (24) 

This yields a 'capture' time 

to = 0~(k/e)t/2wo· (25) 
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The solution is valid provided we have 

(8/00)t ~ (kOoyt, 00 ~ 1, (26) 

which, in view of the fact that kOo ~ 1, is a condition which can be met for a far 
larger range of initial starting positions 00 than those that are valid in the zero-drag 
regime. 

Solution for Trajectory x(O) 

Consider now the solution for x. If we incorporate the conditions (12) and (16) 
and further suppose that the particle lies initially well inside the sphere of influence 
of the planetary embryo, that is, O~ ~ 18 as before, then equation (13a) simplifies to 

x -2w0 8 = -8W~XO-3 +k.x:8. (27) 

Dividing through by 8 and introducing the integrating factor exp(kO), we find that 
this equation may be integrated exactly once to yield 

.( ) 2Wo( ) 0 x t = - T 1-exp(kO - kOo) + 8W~ exp(kO) L 0 x exp~ ~ kO) dO. (28) 

Now dividing this equation by equation (18), we obtain the differential equation for 
the time-independent trajectory x = x(O), namely 

(fO exp( -e~kO) dO) t~~ = H~) t(exp( -kO)-exp( -keo») 

_ W (~) t . (00 x exp( - kO) dO 
o 2 Jo 038(t) . 

(29) 

To solve equation (29) it is convenient to define 

(00 

1(0) = Jo 0-2 exp(-2kO) dO. (30) 

In terms of 1(0), we have 8 = - Wo(28)t exp(kO) It and equation (29) becomes, after 
some rearrangement, 

Olt:O(~) = H~r(eXp(-kO)-eXp(-kOo») + fO It:O(~) dO. (31) 

Next we put 

v = It d(x/O)/dO (32) 

and differentiate equation (31) to obtain 

d(02v)/dO = -(2/8)tO exp(-kO), (33) 

which can be readily integrated to yield 

v(O) = k;02(~) t ((1 +kO)exp( -kO) -(1 +keo)exp( -kOo») . (34) 
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Returning then to equation (32) we finally recover the desired solution 

() = _ (~) t.! roo (1 + k()exp( - k() - (1 + k()o)exp( - k()o) d() 
x( ) e k2 J 0 ()2{I«()} t 

== - (2()g;e)t()0 F«()/()o, k()o). (35) 

Equation (35) describes the trajectory of the accreting planetesimal as seen in the 
rotating frame of the embryo. We evaluate this integral explicitly in the very low 

. and very high gas-drag regimes. 

-o 
~ 

"" 
~ --~ 
t.... 

0·3~1 ---r-----r---i--I--i 

0·2 

o 

0/00 

Fig. 4. Dimensionless trajectory function F(Oj()o, k()o) of the particle plotted against the 
azimuthal angle () ahead of the planet, which is standardized against the starting angle ()o. 

This function is essentially the radial distance -x«()) at which the particle moves towards the 
sun from the circular Keplerian orbit of the planet, starting from the position () = ()o where 
x«()o) = O. The trajectories are plotted for different degrees of gaseous drag, which is measured 
in terms of the dimensionless parameter k()o. For very high drag (k()o ~ 1) the particle hardly 
ventures from the mean circular orbit of the planet before being accreted at the point () = O. 

Case (i), k()o ~ 1. 

Here it follows from equation (30) that I«() = ()-I - ()o I and the integrand III 

equation (35) can be expanded about the point k = 0 to yield 

x«() = - (~~r () LOO «()o+ ()«()0_()t()-3/2 d() 

(()~)t [(()o)t . (O)t 1 {O ( O)}t] = - 2e 02 (f-l +arcsm 00 -Z7C- ()o 1-()0 . (36) 

A sketch of this trajectory, scaled in units of (2()6Je)t, is shown in Fig. 4 as the branch 
marked k()o = 0 of the family of curves of the function F«()/()o, k()o) defined in (35). 
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In order for the solution given by equation (36) to be valid it is necessary to see 
if the conditions (12) and (16) are satisfied. We find that these assumptions are valid 
over all of the orbit except where 8 -+ 0, provided we have 

86/e ~ 2, (37) 

that is, provided the particle lies well inside the sphere of influence of the embryo, 
as already expressed in the earlier assumption 86 ~ teo As 8 -+ 0, however, the 
ratio x(8)/8 diverges as 8 -+ ° and it is no longer true that x 2 ~ 82 • In order for the 
solution to remain valid right up to the point of impact with the planetary surface, 
whose angular radius subtended at the sun is 

8E = RE/ Ro = (epo/ PE)+ Ro/ Ro , (38) 

where PE and Po are the mean mass densities of the embryo and sun, we shall require 
x~ ~ 8~. From equation (36), this implies 

86/e ~ t(2PO/PE)t(Ro/Royt = 8·8x 10- 3 (Earth's orbit), (39a) 

= 3·3 x 10- 3 (Jupiter's orbit), (39b) 

where we have evaluated the expression for the case of rock and ice embryos at the 
orbits of Earth and Jupiter having densities of 3 and 1 gcm-- 3 respectively. 

It is clear that the condition (39) is a .very much harder one to meet than (37) 
which states merely that the particle lie well inside the sphere of gravitational influence 
of the embryo. Unless the condition (39) is satisfied, it is not necessarily true that 
x(o) ~ 8E, implying that the particle directly impacts with the embryo. Instead if 
x(o) > 8E the particle flies by the embryo and may completely escape its influence. 
Detailed numerical integration of the complete nonlinear equations of motion are 
then required to determine if the particle remains bound in the gravitational field 
of the embryo and is later accreted or if it subsequently escapes from its sphere of 
influence. Such calculations are being performed by K. Hourigan (personal 
communication). 

Case (ii), k80 ~ 1. 

Here we find 
/(8) :::::: exp( - 2k8)/2k82 (40) 

and the integral in equation (35) asymptotes to the solution 

x(8) = 28(80 - 8)(ek)-t . (41) 

This solution is shown in Fig. 4 as the curve marked k80 = 100. The other curves in 
the diagram correspond to the exact solution of equation (35). The parabolic section 
defined in equation (41) closely approximates the exact solutions for k80 ;(; 10 over 
all of the range of 8 except for 8 near 80 , A careful inspection of equation (35) shows 
that x vanishes like (80 -8)3/2 as 8 -+ 80 whilst equation (41) admits only a linear 
decline to zero. This deviation corresponds to the initial portion of the trajectory 
where the velocity is very low and the terminal-drag regime, which is represented by 
equation (41), has not been attained. 
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The large-drag solution in equation (41) satisfies all of the assumptions given in 
equation (16)provided that we have 

OMB ~ minCi ~, ikOo) . (42) 

In view of the condition og ~ iB and the fact that we have supposed kOo ~ 1, the 
inequality (42) is automatically satisfied, that is, the solution given by equation (41) 
is valid for each starting position 00 which satisfies the condition og ~ lB. Thus 
as 0 ~ 0 it follows that x ~ 0 and hence the particle is directly accreted by the embryo. 
Gaseous drag therefore secures the accretion of planetesimals which lie well inside the 
sphere of influence of the embryo by resisting the transverse component of Coriolis 
acceleration in the rotating frame which tends to pull the particle away from the 
mean circular orbit of the embryo. 

Planetary Spins 

There is one further general feature ofthe integral solution for the particle trajectory 
which is worth noting here. When the particle impinges on the embryo it imparts a 
spin angular momentum whose sign depends on the angle between the incoming 
velocity vector and the outward radial vector at the planet's surface. The net transfer 
of angular momentum imparted by a mass dm is seen to be, with the help of equations 
(18), (30) and (35), 

dh = (r-rE) x(r-vE)dm = -R~e02{d(x/O)/dO}dmroo 

= + (2wo RMk2){1 +kOE -(I +kOo)exp(kOE -kOo)}dmroo, (43) 

where roo is the unit normal vector to the orbital plane of the embryo having the 
same sense as the orbital angular momentum; that is, since 00 ::,. OE' the particle 
always imparts a positive spin angular momentum to the planet irrespective of the 
initial starting position 00 , 

Hence if planetary formation takes place through accretion of material from 
the mean orbit of the gas ring, the resulting spin moment of the planet is prograde 
with the orbital motion around the sun. This is indeed observed to be the case for 
all of the planets except Venus, which has a very low retrograde spin with a period 
of 243 days. Mercury's spin period of 59 days is exactly 2/3 of its orbital period, 
suggesting that it has become locked into a spin-orbit resonance by the solar tide 
(Goldreich and Peale 1968). Radar observations of the asteroids show that most of 
these bodies also have a positive spin (Hansen 1977) .. 

Let us now compute the expected planetary rotation rate on the basis of equation 
(43). 

Case (i), kOo ~ O. 

Here equation (43) simplifies to 

dh = Wo RUO~ - O~) dm. (44) 

which is simply the initial angular momentum of the particle relative to the embryo 
due to their common motion around the sun. 



·-____ ." ___ .c_",,c_. _______ ~ _______ , 

Accretion of Planetesimals 635 

We now suppose that the planet results from the accretion of all matter originally 
in its orbital path. We also assume that this material is fed in at the outer limit of 
the embryo's sphere of capture, which is a fixed multiple No of embryo radii RE , 

so that (Jo = No (JE and PE is constant. The total spin angular momentum acquired 
by the embryo during growth from radius 0 to RE is then 

H = t(N~-I)MR~wo. (45) 

This leads to a final absolute rotation rate 

WE = Wo +HItMR~ = t(3N~-1)wo· (46) 

Since accretion occurs only for starting distances (Jo which satisfy the condition (39), 
it follows that 

No ;;S Nmax = r7/1Z(pE/Po)1/4(Ro/Ro)3/4 '" 50 (Earth's orbit). (47) 

Choosing No = Nmax, corresponding to the furthermost starting point from which 
accretion can safely take place, we obtain a spin period of order only 2 h. This 
period is much shorter than that observed amongst the terrestrial planets, indicating 
that we cannot overlook the role played by gaseous drag. 

Case (ii), k(Jo ~ 1. 

Here we find 
dh = (2wo R~/ kZ)(l + k(JE) dm , (48) 

which is independent of the starting position (Jo; that is, all planetesimals impart 
a constant angular momentum per unit mass to the planet, independent of their 
point of origin on the mean orbit of the gas ring, provided of course that the particle 
lies initially well within the sphere of influence of the embryo (condition 37). Again 
assuming that the density PE of the embryo is constant throughout accretion, so that 
(JE oc Mt, we find that the resulting rotational period of the planet is 

2n( 5(1 +iY2 RE))-1 ~ 1200a-z h T= - 1+ Z R Z 
Wo Yz E 

(Earth's orbit), (49) 

where a denotes the incoming particle radius, as in equation (8b), and we note that 
Yz RE ~ 1. An assumed value for a of 15 cm leads to a period of 5 h, whilst for 
a = 10 cm we find a period of 12 h; these would be the rotational periods if the 
early Earth formed from rocks of such size and a mean density Ps of 3 gcm -3. For 
Mercury the corresponding periods are found to be 90 and 170 h respectively. These 
latter periods are much longer owing to the higher density of the gas ring at Mercury's 
orbit, which increases the amount of drag, measured by Yz. In fact in the case of 
very large drag (yz RE ~ 1), the accreting particles strike the planet normal to the 
surface leading to a rotational period equal to the orbital period 2n/wo about the 
Sun. For Mercury the observed period does match the orbital one but this is due 
to the present tidal lock of the Sun. It is probably fair to say that the tidal locking 
of Mercury and possibly Venus could probably not have been achieved if these two 
planets had not been born with a very low rotational period. Such an initial state 
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of affairs can be understood in terms of equation (49). We should further note that 
tidal action between the Earth and Moon has also appreciably lengthened the Earth's 
rotational period since the time of its formation. Finally, in deriving equation (49) 
we have assumed that the gas density Pg and hence inverse drag length Y2 were 
constant during the flight of the particle. In fact the planet or planetary embryo is 
likely to accrete a substantial atmosphere of gas during its formation so that Y2 
will increase sharply as the particle approaches the planet. This means that whilst 
our analysis for the initial stages of the trajectory is valid, the closing stage is probably 
far more complicated than we have assumed and is well beyond the scope of this 
paper especially in the case of the major planets. An increase in gas density as the 
particle approaches the planet is likely to reduce the relative velocity between these 
bodies and hence lead to a lower spin angular momentum during accretion. 

Conclusions 

We have seen how gaseous drag can lead to the accretion of particles lying on the 
same mean orbit of a planetary embryo in the modified Laplacian model for the 
formation of the planetary and satellite systems. If the drag is sufficiently strong, 
accretion occurs for all particles lying well inside the sphere of gravitational influence 
of the embryo, whilst in the absence of the gas less than 1 % of such particles are 
accreted. The gas serves to dampen out the Corio lis acceleration due to the sun, 
as seen in the frame of the embryo, which tends to pull the particle off the mean 
circular Keplerian orbit, thereby preventing accretion. We have also found that this 
process of accretion results in a spin angular momentum for the embryo which is 
prograde with, or in the same sense as, the orbital motion. The spin rate decreases with 
increased gaseous drag and is least for the innermost planets where the gas density 
is highest; that is, we can understand why Mercury and Venus should have a very 
low primordial spin in terms of this model. Nonetheless, the results presented here 
must still be regarded as being only approximate since they were obtained on the 
basis of linearizing the equations of motion and so are valid only in narrow regimes 
of the various parameters. In particular we assumed the gas density in each gaseous 
ring to be a constant and ignored the possible existence of a dense atmosphere of 
gas which would have surrounded the planetary embryo during the final stages of 
its growth. Fortunately the presence of such an atmosphere does not alter the 
conclusion regarding the likelihood of particle accretion since this depends only on 
the initial stage of the trajectory, far from the embryo. It does, however, appreciably 
alter the final stage of the orbit where the velocities are higher and the linear analysis is 
probably no longer. valid. A far more detailed and ambitious program would be 
required to examine this latter stage beyond what has been presented here. Such a 
program is being undertaken by K. Hourigan (personal communication). 

Finally it should be emphasized that at the start of this paper we explicitly set 
out to consider the case of accretion within a gaseous ring having an orbital angular 
velocity distribution of the formw(s) = w(Ro) RUs 2 , wherew(Ro) = (GM/R~)t == WK 

is the circular Keplerian value at an orbital radius Ro, the same as that of the embryo. 
The results we have obtained, however, are in fact generally true for any angular 
velocity distribution which satisfies the central condition w(Ro) = WK. The chosen 
distribution arises naturally in the theory of ring formation (Prentice 1978b). The 
importance of this distribution in the present work is that it automatically focuses 
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fresh grain material, as well as wandering planetesimals, back onto the mean circular 
orbit of the growing embryo, where accretion may proceed in the manner described. 
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