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Abstract 

Aust. J. Phys., 1992, 45, 21-37 

The motion of charged particles in superluminal and luminal longitudinal waves of arbitrary 
amplitude is considered in detail, including relativistic effects. In particular we discuss the 
ability of these waves to accelerate particles. Solutions for the particle orbits are given in 
both closed form and in terms of relevant expansions. The drift velocity of the particles, 
which describes the motion of the guiding centre, is identified. Two interesting effects are 
discovered: (i) the ability of large amplitude superluminal waves to drag particles along at a 
velocity conjugate to the wave phase speed and (ii) the existence of 'phase locking' particle 
orbits in the luminal case, in which particles can be accelerated to arbitrary energy. 

1. Introduction 

In this paper we extend the treatment of particle motion in longitudinal 
waves to include superluminal (phase speed vcf> > c) and luminal (vcf> = c) waves. 
Subluminal waves were treated in Part I (Rowe 1992; present issue p. 1). The 
motivations for the calculations presented here were also detailed in Part I. 

Superluminal and luminal longitudinal waves are found in both non-relativistic 
and relativistic plasmas (e.g. Buti 1962; SHin 1960). In particular, the dispersion 
relation for longitudinal waves in a non-relativistic, isotropic, homogeneous, 
thermal plasma is w2 = w; + 3k2Ve2 where wp is the plasma frequency and Ve is 
the thermal speed of the distribution. The phase speed is luminal or superluminal 
for w :5 wp /(l - 3~2 /c2)!, provided that V~:5 c2 /3. It is not possible for 
such waves to be damped by Cerenkov (or Landau) damping, for the resonance 
condition w = k . v cannot be satisfied. Consequently it is necessary to treat the 
particle motion in such waves in order to determine the damping or growth due 
to higher order interactions with the wave (we do not treat the damping here). 
In the superluminal case there is a reference frame in which the electric field 
is time varying only, and the phase speed of the wave vcf> is infinite (we call 
this frame the uniform field frame since the electric field is independent of the 
space coordinate). In contrast, in the subluminal case there is a frame in which 
the electric field is independent of time and the wave phase speed is zero. We 
show in this paper that there are important differences between the behaviour 
of particles in superluminal waves and the behaviour of particles in subluminal 
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waves. These differences are due to the different nature of the waves as just 
described and the fact that particle speeds can only be subluminal. Particle 
motion in luminal waves must be treated separately from both the subluminal 
and superluminal cases. 

In Section 2 we consider the motion of a particle in a superluminal or luminal 
wave and in particular the energy gained by a particle during its motion. We 
include relativistic effects and treat the electric field exactly, but without the 
effects of radiation reaction. In the superluminal case, particles which are strongly 
accelerated by the wave drift at a velocity c/v", where v", is the wave phase speed. 
This effect is the analogue of particle trapping in the subluminal case. One also 
finds that a uniform distribution of particles injected into the wave becomes a 
distribution in drift momentum which is bunched at the value corresponding to 
a drift velocity of c/v",. This is important because it is the drift velocity that 
characterises the particle motion and thus its emission. In the luminal case particles 
with a high enough velocity at the minimum of the electric potential have orbits 
which are non-oscillatory. They experience an almost constant electric field and 
are accelerated indefinitely, as they become closer to being locked into a particular 
phase of the wave. This effect does not occur for motion in plane transverse waves. 

Section 3 deals with exact solutions for the particle orbits from which the 
particle drift velocity is determined. The luminal case has three separate solutions, 
two of them non-oscillatory. We also consider the time taken by a particle to 
attain a given energy if it is injected into a 'phase locking' orbit in a luminal 
wave (these orbits are phase locking rather than phase locked since a particle 
can never truly be phase locked in a luminal wave). In Section 4 we develop two 
expansions of the oscillatory particle orbits. One is an expansion in harmonics of 
the wave motion, valid for all electric field stengths and the second is essentially 
an expansion in the ratio of wave to particle energy. The second expansion 
provides approximations to the coefficients in the first if the electric field is weak. 
We use natural units with Ii = c = 1. 

2. Particle Motion 

(a) Particles in SupeTluminal Waves 

The equation of motion for a particle moving in a longitudinal wave was given 
in Part I along with its first integral (equations 9 and 14 of Part I). From this 
one has 

where 

v = ,;2/v", + (boo + Too cos 'I/J){(boo + Too cos 'I/J)2 + I} t 
,;2 + (boo + Too cos 'I/J)2 ' 

qEo 
Too = mnoo 

(1) 

(2) 

is a dimensionless cop.stant which determines the strength of the wave. In SI 
units Too = e(Aooc)/mc2 for an electron or positron where Aoo is the amplitude 
of the vector potential of the electric field in the uniform field frame (in this case 
E = -aA/at and "\lxA = 0). Electromagnetic theory implies that Aooc::::: <Po (with 
<Po as defined in Part I), so that the strength parameter Too of a superluminal wave 
is analogous to the strength parameter TO (defined in Part I) of a subluminal wave. 
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The solution (1) is valid for all values of 1/J and boo since no particle trapping 
is possible. The particle velocity is plotted as a function of phase 1/J for various 
values of boo, roo and v¢ in Fig. 1. Although trapping is not possible, the phase 
plots in the uniform field frame illustrate an analogous effect by which some 
particles have near zero average velocities (this is quantified in Section 3a). For 
particles with boo = 0, there is no asymmetry in the motion with respect to 
the direction of the particle velocity in the uniform field frame and thus their 
average velocity is zero (note that 1/J is essentially t in this frame). However, as 
Ibool increases so does the asymmetry in the motion and the average speed. If 
roo is large this asymmetry is negligible unless Ibool > Irool. Thus the essence of 
the effect is that for high electric fields more particles (if we assume a uniform 
distribution in boo) have near zero average velocity. In an arbitrary frame the 
average velocity for these particles is near l/v</> (due to the nature of the Lorentz 
transform in the superluminal case) and thus these particles are effectively dragged 
by the wave at a velocity conjugate to the wave phase speed. 

Table 1. Energy gain factor for a particle in a superluminal wave for various ranges of the 
particle canonical momentum in the uniform field frame 

The second column describes the particle orbit. The results hold for all values of roo 

Range of boo 

boo < -roo-'Y~/v", 
-roo-'Y;lv", ::; boo ::; -Cl~2+r~)! Iv", 
-Cl~2+r~)! Iv", ::; boo ::; roo-'Y~/v", 

boo ;::: roo-'Y;/v", 

Comments 

v<o 
v< 0 mostly 
v> 0 mostly 

v>O 

'Ymax/'Ymin 

fblfa 
fb 
fa 

falfb 

We can calculate the energy gain of a particle in the wave, defined by 
R = 'Ymax/'Ymin where 'Ymax and 'Ymin are respectively the maximum and minimum 
'Y-factors attained by the particle throughout its motion. In the uniform field 
frame, the momenta per unit mass achieved at the opposite ends of the orbit 
(Le. 1/J = 0 and 1/J = 11") are Pa = boo + roo and Pb = boo - roo, though these do not 
necessarily correspond to the maximum and minimum values of particle kinetic 
energy per unit mass attained during the motion. After a Lorentz transform to 
a general frame these quantities correspond to gamma factors 

* 
fa = 'Y</> {Pa + v</> (1 + p~)!}, 

v</> 

* 
fb = 'Y¢ {Pb + v</> (1 + p~)!}, 

v¢ 

(3) 

(4) 

where 'Y; was defined in Part 1. The energy gain in the general frame involves fa 
and fb in various ways depending upon the value of the Lorentz boost (Table 1). 

The energy gain R is depicted in Fig. 2 and its qualitative behaviour as 
a function of boo is as follows. For boo « -roo - 'Y;/v</>, R is close to unity. 
It increases with boo until a local maximum is attained with boo slightly less 
than -roo - 'Y;lv</>. This maximum gives the largest energy gain attainable for 
a particle which has negative velocity throughout its motion. The energy gain 
then decreases with boo until boo = _(,,(;2 + r~(J! /v</> at which point particles 
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Fig. 2. Energy gain for particles in a super luminal wave as a function of the particle canonical 
momentum in the uniform field frame, boo. In (a) v", = oc and in (b) v~ = ~. 

attain a maximum velocity during their motion which is equal in magnitude to 
the minimum velocity. For boo greater than this value, R is again an increasing 
function until another local maximum is reached for boo slightly greater than 
roo - 'Y;/v",. This is the maximum energy gain attainable by particles which have 
positive velocity throughout their motion. Increasing boo still further decreases 
R rapidly to unity. Of most interest is the absolute maximum value for the 
energy gain. If v", is taken to be positive this maximum is the one obtained by 
particles with positive velocity in the uniform field frame. The closer v", is to 
unity the greater the ratio of the energy gain for positively moving particles to 
the energy gain for negatively moving particles. 

The absolute maximum gain is 

R _ boo + roo +v",{l+ (boo +roo)2}! 
max- 21' 

boo - roo + v",{l + (boo - roo) }"2 
(5) 

where boo is the single solution of 

o = [1 + v",(boo + roo) ] {I + (boo + roo)2}! [boo - roo + v",{l + (boo - roo)2}!] (6) 

_ [1 + v",(boo - roo) ] 
{I + (boo _ roo)2}! [boo + roo + v",{l + (boo + roo)2}!], 

greater than roo - 'Y;/v", (as an example, for nominal values of roo = 20 and 
l/v", = 0·99, Rmax ~ 500 at boo ~ 14). For v", = 00, the solution to (6) is 
boo = (1 + r~)!. The maximum energy gain is shown in Fig. 3, together with 
the solution to (6). For large roo the curves for boo approximate straight lines 
with slope decreasing with l/v", while the curves for Rmax become straight lines 
with slope increasing with l/v",. On physical grounds it is clear that Rmax 

increases with both roo and l/v",. It increases with the electric field strength roo 
because particles are accelerated to higher velocity if the field is stronger. The 
maximum energy gain Rmax also increases with l/v", because particle velocities 
are shifted with respect to velocities in the uniform field frame (zero particle 
velocity in the uniform field frame corresponds to l/v", in the observer's frame). 
Any quantity defined by a ratio of two gamma factors is naturally increased if 
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Fig. 3. Maximum energy gain for particles in a superluminal wave (b) together with the 
corresponding particle injection momentum (a) as functions of the wave strength and for four 
values of wave phase speed. 

v o I \ \,. '>../ If / )? 'JI 

-1 

(a) 

v o 1.\1,.. } I • I· ~b 'JI 

12 

(b) 

Fig. 4. Phase diagrams for particle motion in a luminal 
longitudinal wave. In (a) r = 1 and in (b) r = 8. Plotted 
is particle velocity as a function of wave phase (in radians) 
for various values of a. Dashed lines are boundaries between 
oscillatory and non-oscillatory motion. 

a Lorentz transform is made to a frame in which the gamma factors are both 
larger. The maximum energy gain for particles in a superluminal wave is of the 
same order of magnitude as for trapped particles in a subluminal wave if ro ~ roo 
and 'Y¢ ~ 'Y;. 
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(b) Particles in Luminal Waves 

The velocity of a particle under the influence of a wave with phase speed 
unity is, from equation (16) of Part I, 

where 

1- (a - r cos '¢)2 
v = 1 + (a _ r cos '¢)2 ' 

r= qEo 
mO 

(7) 

(8) 

is a dimensionless strength parameter for the wave, taking the same values as 
ro and roo in the subluminal and superluminal cases respectively. The following 
points are of interest: (i) if a > r the particle velocity is physical for all values 
of '¢; (ii) if a :5 r the particle velocity becomes unphysical for cos '¢ ~ air; 
(iii) if a < -r the particle velocity is always unphysical. The domain lal :5 r 
represents particles somewhat analogous to the particles trapped in a subluminal 
wave or those with I boo I :5 Irool in a superluminal wave. The fact that the 
particle velocity becomes unphysical if '¢ passes a particular value suggests that 
'¢ is bounded. Equation (5) of Part I shows that d'¢/dt approaches zero as the 
particle velocity approaches unity while the equation of motion (equation 2 of 
Part I) verifies that the particle acceleration decreases to zero simultaneously. 
The particle thus accelerates indefinitely to the speed of light as it approaches 
a phase '¢C = cos -l(a/r), its acceleration decreasing as it does so. This 'phase 
locking' particle motion has no counterpart in the case of particle motion in a 
plane transverse wave. The particle velocity is shown in Fig. 4 as a function of 
'¢ for various values of a and r. 

Table 2. Energy gain factor for a particle in an oscillatory orbit in a luminal 
longitudinal wave 

The first two columns give the range of r and a for which the result in the last column is 
valid and the third column describes the particle orbit 

Range of r Range of a Comments 'Ymax/'Ymin 

All values (1+r2)~ ~ a ~ l+r v < 0 mostly 'Ya 
a ~ l+r v<O 'Ya/rb 

O~r~~ r < a < l-r v>O 'Yb/ra 
l-r ~ a ~-(1+r2)~ v> 0 mostly 'Yb 

r > ~ r ~ a ~ (1+r2)~ v> 0 mostly 'Yb 

Let us now consider the energy gain for particles in oscillatory orbits in a 
luminal wave (Le. a> r). The particle velocity is zero if cos'¢ = (a -l)/r and 
this is only possible if 1 - r :5 a:5 1 + r. If a > 1 + r then the particle velocity 
is always negative, whereas if a < 1 - r it is always positive. The gamma factor 
of the particle at any point of the orbit is 

1 + (a - r cos '¢)2 
"(= 2(a-rcos,¢) , (9) 
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and at either end of the orbit one has 

"fa 

"fb 

1+(a+r)2 
2(a + r) 

1 + (a - r)2 
2(a-r) 

(10) 

(11) 

The energy gain involves either or both of "fa and "fb depending upon whether 
the particle velocity goes through zero or not at some value of 'ljJ (Table 2). 

14 
r= 8 

12 

10 
Fig. 5. Energy gain for non-phase 
locking particles in a luminal wave 

R 
8 as a function of the constant of 
6 the motion a for three electric field 

4 
strengths. 

2 

0 5 10 15 20 25 30 
a 

The energy gain is shown in Fig. 5 and its main features are as follows. Values 
of a arbitrarily close to r give arbitrarily large gain as particles are accelerated 
arbitrarily close to the speed of light. The gain drops as a is increased up 
to a = (1 + r2)!. Beyond this value particles are moving predominantly in the 
negative direction and this results in an increase in the energy gain. There is a 
maximum for negatively moving particles at a = {2 + r2 + (5 + 4r2)! }! with 

R _ (a - r) {I + (a + r)2} 
max - (a + r) {I + (a _ r)2} , (12) 

which is an increasing function of r (as an example, for r = 20, Rmax ~ 20 at 
a ~ 21). For larger values of a, R decreases towards unity. For particles in 
non-oscillatory orbits it is not possible to define an energy gain as for oscillatory 
orbits because the particle energy is unbounded. Instead let us write down the 
phase of the wave at which a particle has a given "f-factor; 

cos 'ljJ = a - "f + ("(2 - I)! 
r 

(13) 

The time taken by a particle in a non-oscillatory orbit to accelerate to a given 
energy is calculated in Section 3b below, with the aid of (13). 
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3. Exact Solutions for Particle Orbits 

(aJ Particles in Superluminal Waves 

29 

In the uniform field frame the equation of motion (equation 6 of Part I) 
reduces to 

dz 1 boo + roo cos 'if; 
d'if; = noo {(boo + roo cos 'if;)2 + I}! . 

(14) 

As in the subluminal untrapped case, treated in Part I, a change of variable puts 
the equation into the standard elliptic integral form. The sign of the jacobian 
must be chosen differently for sin'if; positive and for sin 'if; negative giving a 
piecewise solution. We define the following parameters 

(± 

Lloo 

O!oo 

koo 

T}oo 

r~ ±h~, 

= ((: +4r~)!, 

( 2r2 ) ~ 
(+ +~oo 

( (- + Lloo) ~ 
2Lloo 

1 (+ - Lloo + 2booroo cos 'if; 
2boo O!oo {(roo cos 'if; + boo )2 + I}! ' 
2r~ cos2 'if; + 2booroo cos 'if; - (-

Poo 2boo roo cos 'if; + (+ 

with hoo = (b~ + I)!, and the functions 

IIoo (T}oo) 

Soo(Poo) 

II(O!~, koo ) =f II(sin-1 T}oo, O!~, koo), 

=f (sin-1 Poo - i) , 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

with the upper sign for 'if; E [2N7r, (2N + 1)7rJ and the lower sign for 'if; E 

[(2N + 1)7r, 2(N + 1)7rJ. The subscript infinity is used to indicate the superluminal 
wave case. 

The particle orbit is 

_ N7rf3Doo 1 {Lloo - (- - 2 1 }_ 
Zoo - noo + noo 2boo (Lloo )! IIoo(T}oo) + 'iSoo(Poo) - Zoo, (23) 

where the integer N is the number of half periods already completed by the 
particle, Zoo is an arbitrary constant and f3Doo is interpreted as the particle drift 
velocity (defined by f3 Doo = Llz / Llt where Llz is the distance travelled in an 
integer multiple of half periods Llt). A Lorentz transform yields the result in an 
arbitrary frame 

z = 7; (Zoo + v~~'if;)· (24) 
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Fig. 6. Drift velocity of a particle 
in a superluminal wave shown as a 
function of zero order velocity U oo 

for five wave strengths. 

ol~ 'u?, 
0.2 0.4 0.6 

Uoo 

The drift velocity, corresponding to the quantity f3DQ in the subluminal case 
(Part I), is 

~oo - (- - 2 II 00 (a;' , koo ) , 
f3Doo = 7I"boo(~oo)! (25) 

which is shown in Fig. 6 as a function of the velocity U oo (related in the natural 
way to the momentum boo) for various values of roo. The dragging effect described 
in Section 2a is obvious in the strong field cases in which the drift velocity can 
remain quite low for large values of U oo . 

(b) Particles in Luminal Waves 

The equation of motion in this case is equation (6) of Part I with n = K and 
the particle velocity is given by (7). One has 

dz _ ~{ 1 -I} 
d'IjJ - 2K (a - r cos 'IjJ? . 

(26) 

The integral in this case can be done with the aid of equations (2.554.3), (2.553.3) 
and (2.555.4) of Gradshteyn and Ryzhik (1980). There are three separate solutions 
for the cases a > r, a < r and a = r. Defining the function 

Z('IjJ) 21 2 [ rsin'IjJ + 2a 1 tan_l{(a2-r2)~tan'IjJ/2}] 
a - r a - r cos 'IjJ (a2 - r2)2 a - r 

{
o 

+ 7I"a 
(a2 _ r2)~ 

'IjJ E [2N7I", (2N + 1)71"] 
'IjJ E [(2N + 1)71", 2(N + 1)71"], (27) 

one has the oscillatory solution in the a > r case 

1 { 1 + f3Dc } 
z('IjJ) = 2K N7I" 1- f3Dc + Z('IjJ) - 'IjJ + z, (28) 

where N is the number of completed half periods, Z is an arbitrary constant 
and 13 Dc is the particle drift velocity. The last term is included in the definition 
of Z('IjJ) so that Z('l/J) is continuous at 'IjJ = N7I". As in the subluminal and 
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superluminal cases one can calculate i3Dc exactly by taking flz/ flt where flz is 
the distance travelled after any integral multiple of a half period and flt is the 
time taken for that part of the particle orbit. One then has 

a-(a2-r2)~ 
i3Dc = 2 2 3 • 

a+(a -r)2 
(29) 

The drift velocity is shown in Fig. 7 as a function of the injection velocity U c 

[related to the constant of the motion a through the equation a = '/'c(l - u c )] for 
various values of r. The value of a for which i3Dc is zero is given by 

4 4<_ { (
4)! (J 2 - cos-+r 

2 3 3 

a = {r2 (r4 1 )t}i {r2 (r4 1 )t}i 2 

r - 27 (30) 
4 -+ --- + -+ --- +r 

2 4 27 2 4 27 r4;::: 27' 

where (J = cos-1{(27)!r2/2}. For very low r, the drift velocity is equal to Uc 

and increasing the electric field decreases the value of U c for which the particle 
can attain drift velocities close to the velocity of light. 

(=12 

POc 

Fig. 1. Drift velocity of a particle in 
a luminal wave shown as a function 
of zero order velocity U c for six wave 

II / /",1'" 1 Uc strengths. 

-1 

For higher values of U c (a < r) the drift velocity is not valid since these 
particles do not undergo oscillatory motion. The orbit for these particles is 

1 ( 1 [rsin1/J 

z=2K a
2
-r; a-rc{($ a2);tan(.pf2)+a-~}l_"')+z, 

+ 2 2) 1 In (r2 _ a2)2 tan (1/J/2) - a + (r - a 2 
(31) 

which has a singularity at cos 1/J = air due to the first term in square brackets. 
This solution is well defined at 1/J = 7r due to the presence of tan (1/J /2) in both the 
numerator and denominator of the fraction appearing in the logarithm. Particles 
with this orbit either take an infinite time to accelerate from minus unity and 
move away from 1/J = cos -1 (a/r) or to accelerate to unity and move towards 
1/J = 27r - cos-1(a/r). A third solution (valid for a = r) is also non-oscillatory, 

1 { 1 (7r 1/J) 1 3 (7r 1/J) }_ z = - - - tan - - - - - tan - - - -1/J + z (32) 
2K 2r2 2 2 6r2 2 2 ' 



32 E. T. Rowe 

and particles with this solution behave in much the same way as those with the 
previous solution. 

The orbit (31) can be used to calculate the time taken by a particle in a 
non-oscillatory orbit to attain a given energy. The definition of phase, 'If; = nt-Kz, 
together with (31) gives time as a function of phase. Equation (13) implies that 
for 'Y ~ 1, a - r cos 'If; ~ (2'Y)-1. If 'If; is sufficiently close to 'If;e, the first term in 
square brackets in (31) dominates and one finds 

t 1 (1 r sin 'If; "I,) ~- +'1' 2K a2 - r2 a - r cos 'If; . (33) 

One then has 

'Y ~ 27l"(r2 - a2)! (f) + 'Yo, (34) 

for particles which gain energy from the wave, where T is the period of the wave 
and 'Yo is the energy at t = 0 (the sign of the first term is negative for particles 
which give up energy to the wave). Thus after an initial period of time, during 
which 'If; is near a value of 7l", the particle gains energy linearly with time (for 
example, a particle with a = 0 has energy 'Y = 27l"lrl + 'Yo after one wave period). 
An important point is that both electrons and positrons are accelerated in the 
same direction, at different phases of the wave. The energy gained after one 
wave period increases approximately linearly with Irl and decreases with lal. 

4. Orbit Expansions 

(a) Particles in Superluminal Waves 

In the uniform field frame expanding the orbit in a Fourier series gives 

00 

Zoo = L Sp sin(p'l/J) + (3 ~oo 'If; + Zoo , 
p=1 00 

(35) 

where the Sp are constants to be determined and Zoo is an arbitrary constant. 
Differentiating (35) leads to 

dz 00 

d; = L pSp cos (p'l/J) + (3 Doo 
p=1 0.00 ' 

(36) 

and the left hand side is determined by equation (6) of Part 1. The order 
of magnitude of the Sp varies with boo and roo (however 8 1 is the dominant 
coefficient since it corresponds to a term with the same period as that of the 
particle motion). The coefficients 8p and (3Doo are 

Sp = __ 00 + roo cos 'If; 2 111" b 
p7rnoo 0 {(boo + roo cos 'If;)2 + I}! cos (P'lf;)d'lf;, (37) 

(3Doo =.!. r boo + roo cos 'If; d 
7l"Jo {(boo+roocos'lf;)2+1}! 'If; , (38) 
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with, for example 

81 = 2 Lloo - ( { 2Ll } 
7I"floo Too(Lloo)t K(koo ) + ( __ ~oo E(koo ) • 

(39) 

An appropriate Lorentz transform (see Appendix 1) yields the result in an 
arbitrary frame 

Z = 1/Jf3D ~... K(v", _ f3D) + L./,y",8p sm(p1jJ) + 'Y;2(2 - f/v",) , 
p=1 

(40) 

where 2 and f are arbitrary constants. 
For very strong electric fields, Too» boo, one can approximate the value of 8p 

by taking the particle velocity in the uniform field frame to be 

{
I 0 < 1/J < 71"/2 

v-
-1 71"/2 < 1/J < 71", 

(41) 

and then one has 

8p ::::: 4 sin(p7r /2) 
p271"fl ' 

(42) 

and f3Doo ::::: o. 
In the opposite limit, Too < boo, one can perform an alternative expansion of 

(14) as in the subluminal case in Part I. To third order in Too/boo one has 

.. 3 ( ) [{ 2 () 2} 2 ( ) 'Y",uoo Too 3uoo 2 Too . 3uoo Too . 
Z = ---2- -- 1 + --(5uoo - 1) - sm 1/J - -- -- sm 21/J 

flooboo boo 8 boo 8 boo 

U oo 2 Too. 1/J D 2 ()2] f3 + "24(5uoo - 1) boo sm 31/J + K(v", _ f3D) + const, (43) 

and the drift velocity is 

3uoo Too 4 ( )2} 
f3Doo = U oo { 1 - 4b~ boo • (44) 

It is interesting to note that the second order contribution to the drift velocity in 
the superluminal case is smaller than the contribution in the subluminal case, by 
a factor of u!:, and this reflects the fact that for weak fields superluminal waves 
have less effect on particles than subluminal waves since the particle velocity 
cannot be arbitrarily close to the wave velocity. This of course presupposes that 
the particle has a high enough velocity to be untrapped in the subluminal case. 
The more interesting results of this paper (e.g. low drift velocity of particles in 
a strong superluminal wave) cannot be treated by such approximations. Full 
expansions in the strong and weak field limits are discussed in Appendix 2. 
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In the strong field case, Sp ~ p-2 for p odd and is zero otherwise. This 
dependence on p is stronger than in the corresponding subluminal case and thus 
fewer terms need to be retained in the strong field expansion for the superluminal 
wave case. It is shown in Appendix 2 that in the weak field case, Sp ~ const -p. 

(b) Particles in Luminal Waves 

An expansion of the particle orbits in the luminal case is restricted to the 
oscillating orbits (a > r) which we can expand in a Fourier series 

~ . ) {3Dc 1jJ _ 
Z = L.....J Zp sm (p1jJ + 1 _ {3Dc K + z, 

p=l 

(45) 

where the Zp are constants and z is an arbitrary constant. The form of the linear 
term in 1jJ is such that defining Az and At as the change in z and t respectively 
over an integral multiple of half periods of the motion gives Az/ At = (3Dc. 
Differentiating (45) gives 

dz 00 

. d1jJ = LPZp cos (p1jJ) + {3Dc 1 
p=l 1 - {3Dc K ' 

(46) 

with 

Zp = rnrK Jo (a _ r cos 1jJ)2 - I} cos (p1jJ)d1jJ, 
1 r{ 1 (47) 

~ - 2- r { 1 _ 1 }d1jJ 
1 - {3Dc - 211" Jo (a - r cos 1jJ)2 . 

(48) 

The secOnd integral is effectively given by (29) and the remaining ones involve 
elementary functions. The first two constants Zl and Z2 are 

1 r 
Zl = K (a2 _ r2)~ , (49) 

Z __ 1_{2 a(3r2 - 2a2)} 
2- 2r2K + (a2_r2)~ . (50) 

All of the constants in this case have singularities at a = r when the second 
non-oscillatory solution is valid. For small z = a/r -1, the Zp and {3Dc/(I- (3Dc) 
vary as 

1 1 
Zp ~ ---- (51) 

pKr2 (2z)~ , 

{3Dc 1 1 
1 - {3Dc ~ 2r2 (2z)~ . 

(52) 
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An expansion of the orbit in powers of r / a is possible in the weak field case 
and this is detailed in Appendix 2. To third order in r / a one has 

z = K~2 (~) [ { 1 + £ ( ~ r} sin 1P + i ( ~ ) sin 21P 

+ ~ ( ~ ) 2 sin 31P] + vrtf3D:L \ + const, (53) 

f3D,: = 2~2 { 1- a2 + £ ( ~ r}. (54) 

If the electric field is strong, the Zp vary as p-l and if the electric field is weak 
they vary as const-p. 

5. Conclusions 

In this paper the treatment of the motion of a particle in a longitudinal wave 
is extended to the case of superluminal and luminal waves. Particle orbits are 
given in both closed and expanded forms. The results given here and in Part I are 
used extensively in the treatment of emission by particles in longitudinal waves 
which is to be given in a later paper. The treatment of the orbit presented here 
is important in that no approximation is made and so emission from particles 
in very strong plasma waves can be explored. 

The wave strength for a subluminal wave ro in the case of pulsars was briefly 
considered in Part I where it was found that it is between unity and 106 . The 
parameter roo, defined in Section 2, takes similar values. The development of 
a large amplitude coherent plasma wave in a pulsar magnetosphere, probably 
during the breakdown of the polar gap, needs to be considered in detail if this 
range of values is to be narrowed. 

Two major results of the work presented here are as follows. The first involves 
the superluminal wave case. A distribution of particles which is uniform in particle 
momentum before injection into the wave becomes a non-uniform distribution 
in drift momentum after injection. The peak occurs at a drift momentum 
corresponding to a particle drift velocity of l/v</> , where v</> is the wave phase 
speed (particles tend to be dragged along at a drift velocity of l/v</». This 
effect occurs because particles with low injection momentum in the uniform field 
frame boo are accelerated to approximately the same speed in either direction, 
during any wave cycle. If the electric field is strong, particles are accelerated to 
essentially the speed of light in either direction (unless they have highly relativistic 
injection momenta). The average or drift velocity is thus very close to zero 
compared with the injection velocity. For strong electric fields the distribution 
of particles in drift momentum is relevant (drift momentum is a constant of the 
motion) and thus this result has consequences as far as the absorption or growth 
of radiation is concerned. The second result concerns the luminal wave case. 
The existence of non-oscillatory particle orbits in which particles gain energy 
indefinitely (assuming the wave amplitude is held constant) provides a plasma 
version of a linear accelerator which accelerates positively and negatively charged 
particles in the same- direction. These 'phase locking' orbits describe particles 
which slowly 'catch up' with the wave. Such particles are continuously accelerated 
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in the wave direction as they gradually approach a critical wave phase. The 
acceleration of the particle is such that the approach to the critical phase takes 
an infinitely long time, during which particle energy increases without bound. 
Particles in these orbits experience an essentially constant electric field. These 
results may have interesting astrophysical implications. The maximum energy 
that a particle can attain depends primarily upon the time spent in the wave 
field. This time can be affected by various factors such as the angle between the 
particle velocity and the wave propagation (in the case assumed here, this angle 
is zero), collisions of particles with one another and the growth or decay of the 
wave (the acceleration of particles itself causes the wave to decay). We do not 
go into these details here. 
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Appendix 1: Lorentz Transformations 

Consider a Lorentz transform from the uniform field frame /Ceo to an arbitrary 
reference frame /C. Let quantities defined in /Ceo have subscript 00 (except Eo 
which is the same in all frames moving parallel to /Ceo). The main quantities 
are Eo, 0eo, V eo , 'l/Jeo, "leo, Teo and i3Doo where Eo is an electric field, Oeo is a 
frequency, Voo and i3Doo are velocities, 'l/Jeo is a phase, "leo is an energy and Too is 
a dimensionless parameter defined in Section 2a. The wavevector and frequency 
in an arbitrary frame moving parallel to Eo are 

K = "IR(Koo - VROoo), 0= "IR(Oeo - VRKoo) , 

where VR and "IR are the relative velocity and the corresponding "I-factor, 
respectively, between /C and /Coo. By definition, Koo = 0 and thus VR = -1/v", 
where v", = 0/ K is the wave phase speed in /C. We adopt the notation "I; for 
"IR = 1/(1 - l/v~)!. 

Using the inverse transform one finds the quantities in /Coo in terms of those 
in /C: 

Eo = E, (AI) 

'l/Joo = 'l/J, (A2) 

0 00 = "1;(0 - K/v",) = 0h;, (A3) 

v - l/v", 
(A4) Veo = /' 1 - v v", 

i3 - i3D - l/v", 
Doo - . i3 / ' 1- D v", 

(A5) 
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'Yoo 'YJ,'Y(I - v Iv</»~ , 

roo 'YJ,r . 

Appendix 2: Complete Strong and Weak Field Expansions 

(a) Superluminal Case 

The strong field expansion is developed as follows. Defining 

1(y) = (y + cos'lj;)roo 
{(y + cos'lj;)2r!, + I}! ' 

one has 

2 00 1 (b ) n 111: Sp = --L - ~ 1(n) (0) cos (p'lj;)d'lj;, 
p7rnoo n=O n! roo 0 

where 

1(1)(0) = (l + I)! ~ G (cos'lj;)2n-l+1 
21 ~ I,n{ 2 n=[1/2] I/r 00 + cos 2'lj; }n+! ' 
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(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

with GI,n defined by (All) of Part I. The coefficients in the expansion are sums 
of elliptic integrals. 

The weak field expansion of Sp in roo/boo is obtained from the subluminal 
case (Part I, Appendix 2) by means of the following substitutions: ±Ko -+ 0,00' 

ro/ho -+ -roo/boo, Cp -+ -Sp, uo -+ I/uoo . In the weak field limit then, 
Sp ~ const -p as in the subluminal case. 

(b) Luminal Case 

In the luminal case only a weak field expansion can be found. Defining 

1 _!, 
Z(y) = 2a2(1- y)2 (All) 

one finds that Zp and f3Dc/(I- f3Dc) are given by the expansions for Cp and 1/ f3Do 
(A9 and AI2 of Part I) with the following replacements: Ko -+ K, ro/ho -+ ria 
and F(l) (0) -+ Z(I) (0) where 

Z(I)(O) = (l + I)! _ { ! 
2a2 0 

l=O (AI2) 
1 > o. 

Retaining only the highest order terms gives 

Z ~P+I_I_(~)P 
p p Ka2 2a ' 

(AI3) 

which has a p dependence of form const-P for large p. 
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