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Abstract

In a fractal spacetime, the absence of a gravitational Meissner effect is thought of as ordering
space as a crystal, at both a microscopic and a macroscopic scale. A gravitational Meissner
effect keeps a wormhole open and penetrable and, in the same context, a gravitational
superconductor levitates in an external gravitomagnetic field, an external gravitomagnetic
field induces quantised vortices in a gravitational superconductor and gravitational rotons in
a superfluid, and the planetary systems are self-organised as superconducting structures.

1. Introduction

Recent results show that for ordinary matter there is no gravitational Meissner
effect. Its absence is interpreted as ordering space as a crystal (Ciubotaru and
Agop 1996; Agop et al . 1998a). A gravitational Meissner effect implies the
existence of some ‘exotic’ matter (Morris et al . 1998), i.e. matter that does
not satisfy Hawking’s theorem about the positiveness of the energy–momentum
tensor.

Considering spacetime as being fractal, in the present work we analyse some
implications of the gravitomagnetic field. Thus the absence of the gravitational
Meissner effect is interpreted as a crystal ordering of space, at both a microscopic
and a macroscopic scale. A gravitational Meissner effect may keep a wormhole open
and penetrable and, in the same context, a gravitational superconductor levitates
in an external gravitomagnetic field, an external gravitomagnetic field induces
quantised vortices in a gravitational superconductor and gravitational rotons in
a superfluid, and the planetary systems are self-organised as superconducting
structures.

2. Fractal Gravitational Meissner Effect: Wormholes and Degenerate Vacuum

If the wavefunction Ψ = |Ψ|eiϕ is minimally coupled to the gravitational vector
potential Ag, the current density expression is
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j = −iD(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2DgAg|Ψ|2 , (1)

where ∇ = ∇ − igAg is the covariant derivative, g a coupling constant, D a
diffusion coefficient depending on the fractal dimension (Nottale 1996a) and m
the mass of the particle.

For ρ = |Ψ|2 = const., relation (1) becomes

J = 2D|Ψ|2∇ϕ− 2DgAg|Ψ|2 (2)

from which, applying the curl, one finds

∇× j = −2Dg|Ψ|2Bg , (3)

with Bg the gravitomagnetic field vector. Relation (3) is the London gravitational
equation for the fractal spacetime.

On the other hand, taking the curl of the equation (Peng 1990)

∇×Bg = −16πG
c2

j +
1
c2
∂g
∂t

, (4)

where one neglects the gravitational displacement currents, i.e. ∂tg = 0, and
imposing divBg = 0 (Peng 1990) one gets

∇Bg =
16πG
c2
∇× j . (5)

Therefore, by substituting relation (3) in (5), one finds

∇Bg +
32πgGD

c2
|Ψ|2Bg = 0 . (6)

This means that the fractal spacetime is structured by the gravitomagnetic field
as a crystal, the fractal gravitational lattice constant being

λg =
(

c2

32πgGD|Ψ|2
)1/2

. (7)

In relations (4)–(7), G is Newton’s constant and c the vacuum speed of light.
Relation (6) is a generalisation of some well known results. Thus, with g = 1/2D,
this relation becomes

∇Bg +
1
λ2

g

Bg = 0 , (8)

where

λg =
(

c2

16πGρ

)1/2

. (9)
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The fractal scale is involved through the coupling constant g so that for D = h̄/2m
(Nottale 1996a) the microspace, and for D = Gm/2αgc (Nottale 1996b), where
αg is the gravitational structure constant, the macrospace is structured as a
crystal.

Assuming in equation (6) negative energy densities, ε = −|Ψ|2c2, one gets

∇Bg −
1

Λ2 Bg = 0 , (10)

with

Λ =
(

c4

32πgGDε|Ψ|2
)1/2

. (11)

In particular, for a homogenous and infinite gravitational superconductor, located
in the half space x > 0 of a Cartesian system of coordinates, the equation
becomes

dxxBg −
1

Λ2Bg = 0 (12)

and allows the solution

Bg(x) = Bg(0)e−x/Λ . (13)

Relation (10) or (12) with g = 1/2D defines the fractal gravitational Meissner
effect, and Λ, through (13), the fractal gravitational penetration depth. Hence,
for D = h̄/2m the gravitomagnetic field is expelled from the microspace (quantum
gravitational Meissner effect), and for D = Gm/2αgc from the space at a
cosmological scale (cosmological gravitational Meissner effect).

Table 1. Fractal gravitational depths for some gravitational superconductors

Type of gravitational superconductor ρ (kg m−3) Λ (m)

Cosmological background 5 × 10−28 2 ·3 × 1026

Cosmic dust 10−25 1 ·6 × 1024

Neutron stars 5 × 1017 7 ·3 × 103

In Table 1 we list the fractal gravitational penetration depths calculated from
equation (11) for various gravitational superconductors. It results that even
the neutron stars have a commensurate fractal gravitational Meissner effect. In
essence this implies that the gravitomagnetic field caused by the huge angular
momentum of the star will be expelled from the centre of the neutron star
[probably from its hyperonic nucleus, taking into account the dimensions of the
area where the gravitomagnetic field is completely absent, i.e. L ∼ (10−7 ·3) ×
103 = 2 ·7 × 103 (for more details see Ureche 1987)]. This could be accomplished
through matter-induced supercurrents in the outer layers of the neutron star
creating counter-gravitomagnetic fields to expel the gravitomagnetic field from
its interior, in analogy to the electromagnetic case. In such a context one can
select even the type of gravitational Meissner effect imposed by the structure
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of the neutron star by evaluating its kinetic momentum. Thus, if a quantum
Meissner effect could exist, its kinetic momentum would be

L ∼ 1
2Nh̄ ∼

MNS

mN

h̄ = 0.6× 1023J s ,

where N is the total particle number, M NS the mass of the neutron star and
mN the mass of a neutron, and for the cosmological gravitational Meissner effect
L ∼ 1

2GM
2
NS/αgc = 8 ·9×1044J s. Since the last value is closer to the experimental

value, e.g. for the Crab pulsar L 1040J s, it results that the neutron stars are very
good relativistic laboratories for the cosmological gravitational Meissner effect.

The fractal gravitational Meissner effect relates two seemingly very different
concepts. One of these implies the existence of some distinct spacetime structures,
very special in regard to their topologies, which directly connect, along extremely
short trajectories through quite extradimensional tunnels (with respect to the
hyperplane of the metagalaxy), what are usually very remote areas of the
universe. Such structures, which alter the simply connected characteristics of the
universe, are named ‘wormholes’. Recent results (Morris et al . 1998) indicate
that for a wormhole to remain open and penetrable, one must inject into it some
‘exotic’ matter, namely matter with a negative energy density, just like the one
described by the component T 44 = Λ/k0 (< 0 for Λ < 0 of the conservative
energy–momentum tensor T ab = –gab(Λ/k0) in a rigid pseudo-orthonormalised
frame, where gab = ηab. In the previous relations Λ is the cosmological constant
and k0 is Einstein’s constant. In our opinion it is not necessary to inject exotic
matter into the wormhole to keep it open; it is sufficient for the wormhole’s
matter to become a gravitational superconductor (Agop et al . 1998b). The
wormhole then remains penetrable by a gravitational Meissner effect. We mention
that, in agreement with the wormhole’s definition (Visser and Hochberg 1997),
the gravitational Meissner effect violates the null energy condition. Indeed, as
results from the previous observations, for the gravitational Meissner effect to
exist it is necessary to admit in equation (8) negative densities of energy (T 44 =
−c2|Ψ|2 < 0). At a cosmic scale such a situation is accomplished by the cosmic
dust which, as it constitutes the matter of the wormhole, behaves in rotation as
a gravitational superconductor. Consequently, if the universe is open, its rotation
keeps the wormholes open, any use of an inflationary model being futile (Kolb
and Turner 1989).

A second concept is the degenerate vacuum. As a typical example, let us
consider the free complex scalar field φ. To the Lagrangian density

L = ∂aΦ∂aΦ +m2
0ΦΦ , (14)

where m0 is the mass of the quanta, corresponds the energy–momentum tensor

Tab = ∂aΦ∂bΦ + ∂bΦ∂aΦ− ηab(∂cΦ∂cΦ +m2
0ΦΦ) (15)

and hence the Hamiltonian density

H = T44 = δab∂aΦ∂bΦ +m2
0ΦΦ . (16)
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Here T 44 is positively defined and achieves its minimum for Φ = Φ0 = 0. Therefore
the vacuum state is well defined, being nondegenerate. Such a situation is typical
for all non-self-interacting free fields.

If the free field is self-interacting, to the Lagrangian density

L = ∂aΦ∂aΦ− µ2ΦΦ +
λ

2
(ΦΦ)2 , (17)

where m2
0 is replaced by −µ2 and the self-interaction is achieved through the

coupling constant λ, corresponds the energy–momentum tensor

Tab = ∂aΦ∂bΦ + ∂bΦ∂aΦ− ηab(∂cΦ∂cΦ− µ2ΦΦ +
λ

2
(ΦΦ)2) (18)

and hence the Hamiltonian density is

H = T44 = δab∂aΦ∂bΦ− µ2ΦΦ +
λ

2
(ΦΦ)2 . (19)

If one defines the vacuum in this theory as the state that achieves the minimum
of H , then from the extremum condition

∂H

∂Φ
=
∂H

∂Φ
= 0 (20)

we get the algebraic equation

(ΦΦ)m =
µ2

λ
(21)

with the roots

Φm =
µ√
λ

eiα, Φm =
µ√
λ

e−iα , (22)

with α ∈ R. Therefore, the vacuum states of this theory are degenerate. Obviously,
compared to the first situation, the modulus of the expectation value of the field
in its vacuum state is positive, namely

|Φm| =
µ√
λ
. (23)

Calculating the components of the energy–momentum tensor of the degenerate
vacuum, one finds

Tab[(ΦΦ)m] = ηab
µ4

2λ
(24)

and the resemblance with T ab(Λ) is remarkable for Λ = −k0µ
4/2λ < 0 with λ

> 0.
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Considering that Φ characterises a gravitational superconductor, in situations
where the dependence µ2

eff = −µ2(1 − T/T c) applies, with T and T c the
temperature and the critical temperature associated with the transition from
normal matter to gravitational superconductor, the negative energy states are
obtained for T < T c (Agop et al . 1996). In this case a micro-wormhole is kept
open by the quantum gravitational Meissner effect. This effect, if it exists, would
imply a density of the gravitational superconductor of ρ ∼ 1096 kg m−3 and, by
relation (11), a gravitational penetration depth of Λ ∼ 10−35 m, which is equal
to the Planck length. Only at this scale does the linear approximation of the
gravitational field become invalid.

3. Gravitational Levitation

A consequence of the gravitational Meissner effect is that any gravitational
superconductor placed in an external gravitomagnetic field levitates. We name
such a phenomenon ‘gravitational levitation’. The levitation length z is obtained
following the method given in Burns (1992). Thus, a gravitational superconductor
of volume V and density ρ has in the gravitomagnetic field Bg the energy

W =
B2

g(z)c2

8πG
V . (25)

At equilibrium, the force F = −∂W/∂z corresponds to the gravitational force F
= ρg(z )V , i.e.

F = −∂W
∂z

= ρg(z)V . (26)

If one considers the source of the gravitoelectromagnetic field to be a rigid
sphere of mass M and radius R, spinning uniformly with the angular speed Ω,
then

Bg =
GM

(R+ z)c2
Ω, g =

GM

(R+ z)2 (27)

or, with the notation Bg0 = GM Ω/Rc2, g0 = GM /R2, for R ¿ z ,

Bg(z) ≈ Bg0
R

z
, g(z) ≈ g0

R2

z2 . (28)

Under these circumstances, from (26) and (28) one gets

z =
M

4πρc2
Ω2 =

πM

ρc2
1
T 2 , Ω =

2π
T
, (29)

where T is the period of rotation of the source body. Thus the levitation length
is directly proportional to the mass of the source body and inversely proportional
to its rotation period and to the density of the gravitational superconductor.
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Table 2. Levitation lengths

Structure type M (kg) T (s) ρ (kg m−3) z (m)

Typical neutron star (pulsar) 1030 1 1017 0 ·85 × 10−4

Earth 6 × 1024 86164 1017 0 ·7 × 10−19

Sun 2 × 1030 2 ·3 × 106 1017 3 ·2 × 10−17

Typical galaxy 1 ·3 × 1041 6 ·3 × 1015 1017/10−28 2 ·8 × 10−25/2 ·8 × 1020

We list in Table 2 the levitation lengths of gravitational superconductors
(superfluid and cosmological dust) in gravitomagnetic fields generated by various
material structures. A short analysis of these data leads to some interesting
conclusions:

(i) such an experiment cannot be performed in terrestrial laboratories;
(ii) the relativistic stars (pulsars) behave like gravitational mini-laboratories

in the presence of a superfluid;
(iii) the fact that the levitation length is of the same order of magnitude as

a galaxy’s dimensions shows that the cosmological dust can be expelled
by galactic nuclei through a cosmological gravitational Meissner effect,
giving birth to the galactic arms.

4. Fractal Gravitational Fluxoid and Rotons

An equation similar to (10), but for the current density j, i.e.

∆j− 1
Λ2 j = 0 , (30)

is obtained by substituting in the curl of equation (3), where one allows negative
energy densities and the gauge condition

∇ . j = 0 , (31)

the equation (4) for ∇×Bg, where we assumed ∂tg = 0. The gauge condition
(31) results from the continuity equation ∂tρ+∇ . j = 0 with ρ = const. This is
equivalent, by considering

j = 2DgρAg , (32)

a result obtained by integrating equation (3) for negative energy densities, to

∇ . Ag = 0 . (33)

In other words, at the vacuum–gravitational superconductor interface, the normal
components j n and Agn of the current density and vector potential, respectively,
are null.

Let us now rewrite the current density (2) as

j = 2Dρ(∇ϕ− gAg) . (34)

If inside a gravitational superconductor one considers an arbitrary contour Γ,
along this contour, due to the fractal gravitational Meissner effect (30),
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∮
Γ

j . dl = 0 , (35)

which implies

g−1

∮
Γ

∇ϕ . dl =
∮

Agdl = Φg , (36)

with Φg the flux of the gravitomagnetic field. Since∮
Γ

∇ϕ . dl = 2nπ , (37)

relation (36) becomes

Φg = 2nπg−1, n = 1, 2... (38)

or, for g = 1/2D and

Φg0 = 2πg−1 = 4πD , (39)

Φg = nΦg0 . (40)

Therefore the flux of the gravitomagnetic field is quantised. We call Φg0

the ‘gravitational fluxoid’. Here too, the fractal scale is involved though
the coupling constant g , and thus for D = h̄/2m, equation (39) defines the
gravitational microfluxon, Φg0 = h/2m, and for D = Gm/2αgc, the gravitational
macrofluxon, Φg0 = 2πGm/αgc. Relation (40) stipulates that in the presence of the
gravitomagnetic field, vortices should appear in a gravitomagnetic superconductor.
If the area of such a vortex in the cross section of the gravitomagnetic field is
A = πR2, where R is the vortex radius, the number of vortices per unit area is

N = π−1R−2 . (41)

On the other hand, from equation (40) written as BgπR2 = 4πnD , the vortices’
density is

N =
Bg

4πnD
(42)

thus substituting (42) in (41) yields

Rn = n
1
2R0 , (43)

where the elementary vortex has the radius

R0 =
(

4D
Bg

) 1
2

. (44)
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This means that the vortices’ radii are quantised. For D = h̄/2m the macroscopic
vortices, and for D = Gm/2αgc the microscopic vortices, are quantised. Therefore
one can detect the gravitomagnetic field magnitude by measuring the vortex
radius. In such a test, the gravitoelectric field may be compensated on the basis
of the local equivalence principle.

Table 3. Radii of vortices, R0

Structure type M (kg) R (m) Bg (s−1) D = h̄/2m R0 (m)
(m2 s−1)

Typical neutron star 1030 104 0 ·46 8 × 10−9/ 2 ·6 × 10−4/
(pulsar) 5 ·2 × 10−4 6 ·7 × 10−2

Earth 6 × 1024 6 ·4 × 106 5 × 10−14 8 × 10−9/ 0 ·8 × 103/
5 ·2 × 10−4 2 × 105

Sun 2 × 1030 7 × 108 5 ·7 × 10−12 8 × 10−9/ 0 ·7 × 102/
5 ·2 × 10−4 2 × 104

Typical galaxy 1 ·3 × 1041 1021 0 ·94 × 10−22 8 × 10−9/ 1 ·8 × 107/
5 ·2 × 10−4 4 ·9 × 109

We enumerate in Table 3 the radii R0 of vortices induced by the gravitomagnetic
fields generated by various cosmic structures in gravitational superconductors
(superfluid with generic particles taken as helium ions, D ∼ 8 × 10−9 m2 s−1, and
an electron–positron vacuum, D ∼ 5 ·2 × 10−4 m2 s−1). The gravitomagnetic
fields are calculated using the first relation (27) with z = 0.

Analysing these data yields some interesting conclusions:

(i) such an experiment cannot be performed in terrestrial laboratories;
(ii) the relativistic stars (pulsars) behave like gravitational mini-laboratories

for a superfluid of generic particles taken as helium ions, and an
electron–positron vacuum.

The same result (40) may be obtained using the locally U(1)-gauge-invariant
Lagrangian

L = (∇Ψ)∗(∇Ψ)− µ2Ψ∗Ψ− 1
4FilFil , (45)

where ∇ is the covariant derivative, Fil = ∂iAgl − ∂lAgi the tensor of the
gravitomagnetic field, and µ2 the mass coefficient. The field equations corresponding
to the Lagrangian (45) are then

∆Ψ− 2igAg .∇Ψ + (µ2 − g2AgAg)Ψ = 0 , (46)

∆Ψ∗ + 2igAg .∇Ψ∗ + (µ2 − g2AgAg)Ψ∗ = 0 , (47)

∆Ag + ig(Ψ∗∇Ψ−Ψ∇Ψ∗) + 2g2Ag|Ψ|2 = 0 , (48)

or, in cylindrical coordinates (r ,θ,z ) with
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A1
g = 0, A1

g = Ag(r), A3
g = 0, Ψ = F (r)einθ , (49)

1
r
dr(rdrF )−

(
n

r
− gAg

)2

F + µ2F = 0 , (50)

dr

[
1
r
dr(rAg)

]
− 2g

(
n

r
− gAg

)
F 2 = 0 . (51)

Since (51) admits the solution

Ag = ng−1r−1 , (52)

the gravitomagnetic field flux becomes

Φg =
∫∫

Bg(x, y)dxdy =
∮

Γ

Ag . dl = ng−1

∫ 2π

0

dθ = 2nπg−1 , (53)

that is, equation (38).
The ring vortex induced by a gravitomagnetic field inside a gravitational

superconductor has the kinetic energy per unit length

ε = 1
2ρ

∫ RM

Rm

ν22πrdr (54)

or, taking into account equations (52) and (32),

ε = 1
2ρ

∫ RM

Rm

A2
g2πrdr = 4πD2ρn2ln

RM

Rm

, (55)

where ρ is the density of the gravitational superconductor, RM the outer radius
and Rm the inner radius. Then the energy is

E = 2πRMε = 8π2D2ρn2RMln
RM

Rm

(56)

and momentum of the vortex

p = 4π2DρnR2
M (57)

and we assume, for n = 1, an energy quantum

E0 = 8π2D2ρRMln
RM

Rm

(58)

and momentum quantum

p0 = 4π2DρR2
M . (59)
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Now, eliminating the diffusion coefficient D between relations (58) and (59), one
gets the parabolic dependence

E0 =
p2

0

2m∗
, (60)

where

m∗ = π2ρR3
M

(
ln
RM

Rm

)−1

(61)

represents the effective mass of the vortex. From the dependence (60), in analogy
with Landau’s theory of superfluidity, it results that a gravitomagnetic field induces
in a gravitational superconductor the elementary energy (58) and momentum (59)
excitations, named ‘fractal gravitational rotons’. If D = h̄/2m then the fractal
gravitational roton reduces to the conventional roton from Landau’s theory (Balla
and Deutsch 1970).

5. Planetary Systems as Superconducting Structures

Considering the planetary systems to be superconducting systems and eliminating
Ag in equations (32) and (52) yields

RnVn = 2nD (62)

or, with D = Gm/2αgc and 1/αg = 2072±7 (Nottale 1996b),

RnVn = n
Gm

αgc
, (63)

i.e. the kinetic orbital moments of the planets are quantised. We show in Table 4,
in contrast, the kinetic moments (RnV n) of the planets calculated from (63) and
the experimental data (the average value of 1/αg was used).

Table 4. Quantisation of planetary kinetic moments

Planet n R0V 0 × 1015 (m2 s−1) RnV n × 1015 (m2s−1) RnV nexp × 1015 (m2 s−1)

Mercury 3 0 ·9165 2 ·74 2 ·76
Venus 4 0 ·9165 3 ·66 3 ·78
Earth 5 0 ·9165 4 ·58 4 ·45
Mars 6 0 ·9165 5 ·49 5 ·49
Ceres 8 0 ·9165 7 ·33 —
Jupiter 11 0 ·9165 10 ·08 10 ·15
Saturn 15 0 ·9165 13 ·74 13 ·75
Uranus 21 0 ·9165 19 ·24 19 ·55
Neptune 26 0 ·9165 23 ·82 24 ·55
Pluto 30 0 ·9165 27 ·49 27 ·91

Since Gmm′/R2
n = m ′ V 2

n /Rn, which implies

RnV
2
n = Gm , (64)
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substituting (63) in (64) leads to

Vn =
V0

n
, V0 = αgc , (65)

i.e. the revolution speeds of the planets are quantised. For V 0 we used the
value V 0 = 144 ·7±0 ·5 km s−1 (Nottale 1996b). Table 5 gives, in contrast, the
revolution speeds V n computed from relation (65) and the experimental ones
V nexp (we choose for V 0 the mean value).

Table 5. Quantisation of planetary revolution speeds

Planet n V 0 (km s−1) V n (km s−1) V nexp (km s−1)

Mercury 3 144 ·7 48 ·2 47 ·9
Venus 4 144 ·7 36 ·17 35 ·0
Earth 5 144 ·7 28 ·94 29 ·8
Mars 6 144 ·7 24 ·11 24 ·1
Ceres 8 144 ·7 18 ·0 —
Jupiter 11 144 ·7 13 ·15 13 ·0
Saturn 15 144 ·7 9 ·64 9 ·0
Uranus 21 144 ·7 6 ·89 6 ·8
Neptune 26 144 ·7 5 ·56 5 ·4
Pluto 30 144 ·7 4 ·82 4 ·7

Eliminating V n in relations (64) and (65) gives

Rn = n2R0, R0 =
Gm

α2
gc

2 , (66)

i.e. the radii of the planetary orbits are quantised. In Table 6, in contrast, the
radii Rn of the planetary orbits are given calculated from (66) and the major
semiaxes Rnexp.

Table 6. Quantisation of planetary orbit radii

Planet n R0 (a.u.) Rn (a.u.) Rnexp (a.u.)

Mercury 3 0 ·0423 0 ·380 0 ·387
Venus 4 0 ·0423 0 ·676 0 ·723
Earth 5 0 ·0423 1 ·057 1 ·0
Mars 6 0 ·0423 1 ·522 1 ·523
Ceres 8 0 ·0423 2 ·707 2 ·766
Jupiter 11 0 ·0423 5 ·118 5 ·202
Saturn 15 0 ·0423 9 ·517 9 ·536
Uranus 21 0 ·0423 18 ·654 19 ·210
Neptune 26 0 ·0423 28 ·594 30 ·138
Pluto 30 0 ·0423 38 ·07 39 ·390

The planetary revolution periods

Tn = 2π
Rn

vn
= n3T0, T0 = 2π

Gm

(αgc)3 (67)
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are also quantised. In Table 7 the revolution periods Tn of the planets are given
calculated from (67) and the experimental values.

Table 7. Quantisation of planetary revolution periods

Planet n T 0 (yr) Tn (yr) Tnexp (yr)

Mercury 3 0 ·00870 0 ·234 0 ·241
Venus 4 0 ·00870 0 ·556 0 ·615
Earth 5 0 ·00870 1 ·087 1
Mars 6 0 ·00870 1 ·879 1 ·881
Ceres 8 0 ·00870 4 ·454 4 ·67
Jupiter 11 0 ·00870 11 ·579 11 ·962
Saturn 15 0 ·00870 29 ·362 29 ·458
Uranus 21 0 ·00870 81 ·570 84 ·013
Neptune 26 0 ·00870 152 ·911 164 ·794
Pluto 30 0 ·00870 234 ·900 247 ·686

Such a quantisation of motion is not singular to the solar system; it can be
observed in the rings of Saturn as well. In Table 8 we present the radii Rn of
the ring-shaped orbits calculated using equation (66) and the experimental data,
Rnexp. These results are close to the ones given in Landolt-Börnstein (1993).

Table 8. Quantisation of orbital radii of Saturn’s rings

Ring name n R0 × 103 (km) Rn × 103 (km) Rnexp × 103 (km)

D 6 1 ·817 65 ·4 67 ·0
B 7 1 ·817 89 ·0 92 ·0
A 8 1 ·817 116 ·2 122 ·2
F 9 1 ·817 147 ·1 140 ·4
E1 10 1 ·817 181 ·7 180 ·0
E2 16 1 ·817 465 ·1 480 ·0

6. Conclusions

The main conclusions of this paper are as follows:

(i) the absence of a fractal gravitational Meissner effect is thought of as
an ordering of space as a crystal. For D = h̄/2m the microspace is
structured, and for D = Gm/2αgc the macrospace;

(ii) the gravitational superconductors exhibit fractal gravitational Meissner
effects. A wormhole can be kept open by a cosmological gravitational
Meissner effect, and a micro-wormhole by a microscopic gravitational
Meissner effect;

(iii) a gravitational superconductor levitates in an external gravitational field.
Calculating the levitation length of a superfluid in gravitomagnetic fields
induced by different cosmic structures, it results that the relativistic stars
(pulsars) can be considered gravitational mini-laboratories. Since the
levitation length of the cosmological dust in the gravitomagnetic field of
a galaxy has the same order of magnitude as the galaxy’s dimensions,
one can suppose the galaxy arms to occur as a result of the cosmological
gravitational Meissner effect;
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(iv) an external gravitomagnetic field induces vortices with quantised radii
in a gravitational superconductor. Calculating the elementary radii
for superfluids in gravitomagnetic fields generated by various cosmic
structures, indicates that pulsars are gravitational mini-laboratories. In
the same context, the elementary excitations are called gravitational
rotons and are reduced, for D = h̄/2m, to Landau rotons;

(v) the solar system is self-organised as a superconducting structure. Then the
revolution speeds, kinetic momenta, planetary orbital radii and revolution
periods are quantised;

(vi) we note that other values for 1/αg and V 0 are found in the work of
Agnese and Festa (1997a, 1997b).
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