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Abstract

We present a theory for calculating the phonon-assisted tunnelling current in asymmetric
double barrier resonant tunnelling structures (DBRTS), in which all of the phonon modes
including the interface modes and the confined bulk-like LO phonons and the conduction
band nonparabolicity are considered. An important physical picture about coherent and
phonon-assisted tunnelling is given. The coherent tunnelling current can be directly determined
by both the width of the resonant level and the peak value of the transmission coefficient at the
resonant level. The phonon-assisted tunnelling current mainly comes from electron interaction
with higher frequency interface phonons (especially the interface phonons localised at either
interface of the left barrier). Phonon-assisted tunnelling makes a significant contribution
to the valley current. The subband nonparabolicity strongly influences on electron–phonon
scattering and current-to-voltage characteristics. A specially designed asymmetric DBRTS
may have an improved performance over the symmetric DBRTS.

1. Introduction

There has been significant interest recently in polar semiconductor resonant
tunnelling diodes (RTD) for their special device applications, as well as for their
unique physical properties (Mizuta and Tanoue 1995; Sun et al. 1998). One of
the most important RTD are the so-called double barrier resonant tunnelling
structures (DBRTS) which consist of an undoped quantum well (QW) layer
sandwiched between undoped barrier layers and heavily doped contact layers
which offer tunnelling electrons as an emitter and collector. A DBRTS is an
open quantum system in which the electronic states are scattering states with a
continuous distribution in energy space, rather than bound states with a discrete
energy spectrum. The quasi-bound states (resonant states) are formed in the
QW which accommodate electrons for a certain dwell time. There are many
interesting physical problems associated with resonant tunnelling. Hence, the
DBRTS has attracted great interest and has been investigated both from the
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standpoint of quantum transport physics and also its application in functional
quantum devices since the pioneering work of Tsu and Esaki (1973) and Chang
et al. (1974).

The most important practical feature of the DBRTS for electronics is its
negative differential resistance (NDR), which is particularly useful for high-
frequency resonant tunnelling and rapid switching devices. For a given DBRTS, a
current peak exists in its current-to-voltage characteristic curve for a certain bias
voltage Vr. If a bias voltage V > Vr, the slope of this curve becomes negative,
and an obvious NDR can be observed. The NDR can be quantified by the
peak-to-valley ratio (PVR) of the current-to-voltage characteristic curve. A large
PVR and a low valley current are desirable for most RTD device applications.
Thus, understanding the mechanism of the valley current is quite important for
designing better RTDs.

Generally speaking, phonon-assisted tunnelling, Γ−X intervalley tunnelling,
impurity scattering, the interface roughness scattering and the tunnelling of
quasi-two-dimensional subband electrons in a pseudo-triangular well in the emitter
can cause the valley current (Mizuta and Tanoue 1995; Roblin and Liou 1993;
Sun et al. 1998). For a polar semiconductor DBRTS, the effects of electron
scattering on resonant tunnelling are very important and inevitable especially
at room temperature. The electrons in the DBRTS may emit phonons during
the resonant tunnelling process. Resonant tunnelling accompanied by a phonon
emission is called phonon-assisted tunnelling (Mizuta and Tanoue 1995). In
general, the probability of this process is relatively small compared with that of
the main resonant tunnelling process. Phonon-assisted tunnelling in RTD has
attracted much attention in the recent literature because of its importance in
controlling the NDR.

Longitudinal-optical (LO) phonon-assisted resonant tunnelling at low tem-
perature was first observed experimentally by Goldman et al. (1987) using an
Al0 ·4Ga0 ·6As(85 Å)/GaAs(56 Å)/Al0 ·4Ga0 ·6As(85 Å) DBRTS. They found a
small current peak in the valley region at 4 ·2 K with a magnitude of about
0 ·04 of the main peak. This peak was interpreted as being due to a single
LO phonon-emission-assisted resonant tunnelling process. Subsequently, several
studies have reported on phonon-assisted tunnelling in DBRTS at low temperatures.
Leadbeater et al. (1989) investigated the current–voltage characteristics of DBRTS
in the presence of a quantising magnetic field perpendicular to the barriers. Cai
et al. (1989) studied one-dimensional electron tunnelling in an arbitrarily shaped
barrier in the presence of electron–phonon scattering. Chevoir and Vinter (1989)
calculated the LO phonon scattering contribution to electron tunnelling through
an RTD. Wingreen et al. (1989) further investigated the resonant tunnelling
transmission probability for an electron interacting with phonons and inelastics
scattering in DBRTS. Turley and Teitsworth (1991a, 1991b, 1992, 1994) studied
phonon-assisted tunnelling in symmetric DBRTS. Mori et al. (1992) investigated
the effects of electron–interface–phonon interaction on resonant tunnelling in
symmetric double barrier heterostructures. Mains and Haddad (1988) studied
phonon-scattering-assisted tunnelling in RTD at room temperature by using the
Wigner function method. Roblin and Liou (1993) derived an envelope equation
by using the generalised Wannier function basis set and further investigated
three-dimensional scattering-assisted tunnelling in RTD.
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Asymmetric semiconductor heterostructures, such as asymmetric DBRTS and
QW, have also attracted much attention due to their special device applications
in recent years (Chen et al. 1991; Shi and Pan 1995, 1996; Schmidt et al. 1996;
Orellana et al. 1996; Shi et al. 1997, 1998). It is believed that the phonon modes in
polar semiconductor heterostructures are much more complicated than those of the
bulk materials. The presence of interfaces in heterostructures necessarily alters the
phonon modes and their interaction with electrons. Hence, the study of optical-
phonon modes and their interaction with electrons in various heterostructures
including asymmetric DBRTS and QW is imperative for analysing experiments
and for device applications. Recently, optical-phonon modes, electron–phonon
interaction and scattering, and polaron effects in asymmetric QW have been
investigated in detail (Shi and Pan 1995, 1996; Shi et al. 1997). Some interesting
results, such as the forbidden-frequency behaviour of the interface optical phonon
modes and the anomalous phenomenon of the electron–phonon interaction in
asymmetric QW caused by structural asymmetry has been found (Shi and Pan
1995, 1996). Moreover, Chen et al. (1991) pointed out that NDR can be
tuned when asymmetric barriers are used in RTD. Asymmetric double barrier
heterostructures may vary the amount of charge accumulation in the QW so
that the current-to-voltage characteristics can be modified (Schmidt et al. 1996;
Orellana et al. 1996). However, as we know, little theoretical work has been
done on the electron–phonon interaction and scattering, or the phonon-assisted
tunnelling in important asymmetric DBRTS at room temperature in the presence
of the electron–phonon interaction, despite the great theoretical and practical
importance of this work. It is thus worth while investigating the optical-phonon
modes, the electron–phonon interaction and scattering and the phonon-assisted
tunnelling in asymmetric DBRTS. The main purpose of this paper is to investigate
the electron–phonon scattering and the phonon-assisted tunnelling in asymmetric
DBRTS at room temperature and to show the advantages of asymmetric DBRTS
for making the RTD. The phonon-assisted tunnelling physical picture is further
clarified. We give the theory for the electron–phonon interaction and scattering
and for the phonon-assisted tunnelling in asymmetric DBRTS in Section 2,
present the numerical results and physical analysis in Section 3, and draw some
conclusions in Section 4.

2. Theory

(2a) Electron–Phonon Interaction and Scattering in Asymmetric DBRTS

In order to calculate the phonon-assisted tunnelling current, let us first investigate
the electron–phonon interaction and scattering in an asymmetric DBRTS. Within
the framework of the dielectric continuum model, optical phonon modes and the
electron–phonon interaction Fröhlich-like Hamiltonian He−ph can be conveniently
obtained. The electron–phonon scattering rate W can be calculated according to
the Fermi golden rule. For an asymmetric DBRTS we can obtain the scattering
rate due to interface phonons as follows (Shi and Pan 1996):

W (i→f)(~ki, Ez) =
e2

16πε0

∑
m

∫
d2~k

1
ωm(k) · k | Fm(k) |2 δ(εi − εf ± h̄ωm(k))

× (Nph + 1
2 ∓ 1

2 )δ~ki,~kf∓~k , (1)
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and the rate due to confined LO phonons is

W (i→f)(~ki, Ez) =
e2

2πε0

∑
ν

jmax∑
j=1

ωLν

Tν

(
1
ε∞ν

− 1
ε0ν

)
| Fif (qjν) |2

×
∫
d2~k

1
k2 + (qjν)2

δ(εi − εf ± h̄ωLν)

× (Nph + 1
2 ∓ 1

2 )δ~ki,~kf∓~k , (2)

where Nph is the phonon occupation number and can be determined by the
Planck distribution as

Nph =
1

exp(h̄ωp/kBT )− 1
. (3)

Here h̄ωp is the phonon energy, T is the temperature and kB is the Boltzmann
constant. In equations (1) and (2), the upper sign is for phonon absorption and
the lower is for emission, and Fm(k) and Fif (qjν) are the overlap integrals defined
as

Fm(k) =
(

1
Λ∆2

) 1
2
∫
L

ψ∗f (z)fm(k, z)ψi(z)dz , (4)

where L refers to the length of the entire DBRTS region, and

Fif (qjν) =
∫

layer ν

ψi(z) sin
[
qjν(z − z0ν)

]
ψ∗f (z)dz , (5)

where εi and εf are, respectively, the energies of the initial and final electron
states. The states ψi and ψf are the electron envelope wavefunctions in the
initial and final states. For phonon-assisted tunnelling, ψi can be calculated
according to the transfer-matrix method (Shi et al. 1998). Since the width of
the final resonant state is very narrow, we can treat the final state as being
a completely localised state in the well (Chevoir and Vinter 1989; Turley and
Teitsworth 1991a, 1991b, 1992, 1994; Vassell et al. 1983). Equations (1) and
(2) are exact and show that scattering rates are functions of the in-plane wave
vector ~ki and energy Ez in the z direction of the initial electron state. Moreover,
equations (1), (2), (4) and (5) further clearly indicate that the larger the overlap
integral between the initial and final states, the larger the scattering rate. Thus
the scattering rate is a sensitive function of Ez. On the contrary, ~ki, in common
with ~kf , only occurs in the delta functions in equations (1) or (2) and thus
gives an indirect and weak influence on the overlap integral. Since the scattering
rate W (~ki, Ez) depends strongly on Ez but weakly on ~ki, we can thus assume
W (~ki, Ez)

.= W (0, Ez) ≡W (Ez) for simplicity. For phonon-assisted tunnelling in
an asymmetric DBRTS, the simplified scattering rate W (Ez) for phonon emission
can be obtained from equations (1) and (2) as follows:
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W (Ez) =
e2

8ε0

8∑
m=1

1
ωm(kp)

|Fm(kp)|2
(∣∣∣∣ h̄2

m∗
kp + h̄

dωm

dk

∣∣∣∣
k=kp

∣∣∣∣)−1

(Nph + 1) , (6)

where kp satisfies

h̄2

2m∗
k2
p + h̄ωm(kp)− (Ez − Ew) = 0 , (7)

for the interface phonon and

W (Ez) =
m∗e2

h̄2ε0

∑
ν=2,3,4

jmax∑
j=1

ωLν

Tν

(
1
ε∞ν

− 1
ε0ν

) | Fif (qjν) |2(
(kνp )2 + (qjν)2

) (Nph + 1) , (8)

where kνp is given as

kνp = [2m∗(Ez − Ew − h̄ωLν)] 1
2 /h̄ , (9)

for the confined bulk-like LO phonon in the left barrier (ν = 2), the well layer
(ν = 3) and the right barrier (ν = 4). In equations (7) and (9), Ez − Ew
(= Ezi − Ezf ) is the energy difference between the incident state and the final
resonant state localised in the well. The definitions of qjν , Tν , Λ, ∆, fm(k, z)
and z0ν , provided in Shi and Pan (1996), are lengthy and not repeated here.
Electron–phonon scattering in the emitter and the collector regions has been
ignored because the overlap integrals between the emitter (collector) and the
final localised resonant state in the well are negligible.

(2b) Phonon-assisted Tunnelling

It is well known that the theoretical values of the coherent tunnelling current
density in the valley region of the current-to-voltage curve are much lower than
those of experimental observations. This is mainly due to neglecting some complex
effects such as: electron–phonon inelastic scattering from the emitter state with
a continuous energy spectrum to the quasi-bound state localised in the QW;
Γ-X intervalley tunnelling; the effects of band nonparabolicity; impurity and trap
state scattering; interface roughness scattering; and the quasi-two-dimensional
subband electron tunnelling as pointed out in the Introduction to this paper.
In Figs 1 and 2 we show that an electron in the emitter state ψ(Ez, z) can
easily escape through the right barrier to the collector. Electron tunnelling in
a DBRTS depends sensitively on the bias voltage V . Fig. 1 shows a bias state
at resonance (V = Vr) which corresponds to the peak of the current-to-voltage
curve as the electron transmission coefficient T (Ez) through the DBRTS reaches
its maximum at that point. For a higher voltage V > Vr, we have a bias state
at the off-resonance condition as shown in Fig. 2, in which the transmission
coefficient T (Ez) is small, corresponding to the valley of the current-to-voltage
curve. In this case, the energy Ez of an emitter state is higher than the energy
Ew of the quasi-bound state (also called resonant state) in the QW. However,
phonon-assisted tunnelling may take place if Ez−Ew ≥ h̄ωp, ωp being the phonon
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frequency. This process leads to an appreciable extra current Jp, where the
subscript p stands for the phonon-assisted tunnelling current. Thus, if we neglect
other complex effects, we can approximately express the total tunnelling current
density as

J = Jc + Jp , (10)

where Jc is the coherent tunnelling current density.

eV

EF

0
wE

Fig. 1. Electron coherent tunnelling
of the resonant bias state (V = Vr),
corresponding to the peak of
the current-to-voltage curve: Ew
represents a quasi-bound state and
EF the Fermi level in the emitter.

eV

EF

0

Ew

∆Ez

Fig. 2. Phonon-assisted tunnelling
of the off-resonant state (V > Vr)
corresponding to the valley of the
current-to-voltage curve, where ∆Ez
denotes the electron-energy loss in
the z direction.
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In order to construct an expression for J , we make a simple analysis as follows.
The Jc term can be written as

Jc = en〈T (Ez)vz(Ez)〉 = e
N

Ω
〈T (Ez)vz(Ez)〉 , (11)

where e is the absolute value of the electron charge and N is the total electron
number in the electron reservoir with volume Ω. The electron density n is assumed
to be constant, and T (Ez) is the electron transmission coefficient, vz(Ez) the
electron moving velocity in the z direction, and 〈〉 stands for ensemble average.
Similarly, we have

Jp =
eN〈W 〉
A

, (12)

where A is the cross-sectional area of the structure and W is the electron–phonon
scattering rate, which has been studied in detail in Section 2a.

From equation (11) we can obtain the following expression for calculating
coherent tunnelling current density, which is known as the Tsu-Esaki (1973)
current formula:

Jc = Jc→ − Jc← ,

Jc→ =
em||kBT

2π2h̄3

∫ ∞
0

T (Ez) ln{1 + exp[(EF − Ez)/kBT ]}dEz ,

Jc← =
em||kBT

2π2h̄3

∫ ∞
0

T (Ez) ln{1 + exp[(EF − eV − Ez)/kBT ]}dEz . (13)

Here Jc→ (Jc←) represents the tunnelling current from the emitter (collector)
to the collector (emitter). The electron effective mass in the x− y plane which
is parallel to the interfaces of the DBRTS is m||, and T (Ez) is the electron
transmission coefficient through the double barrier structure. The energies EF
and EF − eV are, respectively, the local Fermi energy levels in the emitter and
collector (see Fig. 1 in which the doping concentration in the collector has been
assumed to be equal to that in the emitter, and V is the bias voltage). We
know from our numerical calculations (cf. Fig. 7) that Jc→ is very important
for forming the NDR of DBRTS, which controls the coherent tunnelling current
density. Equation (13) clearly shows that the logarithmic function is independent
of the structure of the DBRTS; this function can be completely determined from
the doping density and the temperature T . On the contrary, the transmission
coefficient T (Ez) depends sensitively on the structure of the DBRTS and the bias
voltage. Therefore, T (Ez) or, more precisely, the area of the product of T (Ez)
with the logarithmic function, is the most important factor for the coherent
resonant tunnelling process, and requires detailed analysis.

Let us now derive an explicit expression for the phonon-assisted tunnelling
current density Jp. The ensemble average 〈W 〉 of the electron–phonon scattering
rate W (~ki, Ez) can be expressed as a sum over all of the emitter states as follows:
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〈W 〉 =
2
N

∑
~ki,Ez

f(~ki, Ez)W (~ki, Ez) . (14)

The factor 2 accounts for the electron spin degeneracy, and f(~ki, Ez) is the Fermi
distribution function. Since the density of states in k-space for the emitter is
Ω/(2π)3, with Ω being the volume of the emitter, and dkz = dEz/(h̄vz), equation
(14) can be rewritten as

〈W 〉 =
2
N

Ω
(2π)2

∫ ∫
dkidEz

ki

1 + exp[(Ez + h̄2k2
i /2m|| − EF )/kBT ]

W (~ki, Ez)
h̄vz

.

(15)

Substituting equation (15) into (12), and assumingW (~ki, Ez)
.= W (0, Ez) ≡W (Ez)

as analysed in Section 2a, we obtain

Jp =
em||kBTLe

2π2h̄3

(mz

2

) 1
2
∑
p=ν,m

∫ ∞
Ew+h̄ωp

ln[1 + e(EF−Ez)/kBT ]√
Ez

Wp(Ez)dEz , (16)

with Le the emitter length, mz the electron effective mass for the motion along
the z-direction in the emitter, ν = 2, 3, 4 the index for confined bulk-like LO
phonon modes in the left-barrier, the well and the right-barrier layers, and
m = 1, 2, 3, 4, 5, 6, 7, 8 the index for the eight interface phonon modes. The
electron–phonon scattering rate in the νth layer is Wν(Ez), and Wm(Ez) is the
electron–mth-interface phonon modes scattering rate.

It is worth mentioning that equation (16) represents only the phonon-assisted
tunnelling current from the emitter-to-collector tunnelling via a phonon emission.
More accurately, it should be subtracted by the back current from collector-to-
emitter tunnelling by means of a phonon absorption. From Shi et al. (1998) and
Fig. 2, we know that the electron–phonon scattering rate for collector-to-emitter
tunnelling is much smaller than that for the emitter-to-collector tunnelling. There
are two reasons for the disparity in backward versus forward scattering rates. One
reason is that the overlap integral of the electron envelope wave functions between
the initial state (plane waves incident from the collector) and the final one (localised
states in the emitter) for the collector-to-emitter tunnelling is much smaller than
that for the emitter-to-collector tunnelling process with the final state localised
in the QW. The other reason is that the phonon occupation number Nph + 1
for phonon emission is larger than Nph for absorption according to equation (3).
Hence the phonon-assisted tunnelling current from collector-to-emitter tunnelling
via a phonon absorption is much smaller than that from emitter-to-collector
tunnelling by virtue of a phonon emission and has been ignored in equation (16)
due to the smaller scattering rate Wp(Ez) for collector-to-emitter tunnelling. This
has also been confirmed by Turley and Teitsworth (1991a, 1991b, 1992, 1994).

Comparing equations (13) and (16), we can see that they are similar in
appearance. The factor of the logarithmic function is the same in both. The only
difference is that the electron transmission coefficient T (Ez) in Jc→ is replaced
by Wp(Ez)

√
mz/2EzLe in the expression for Jp. Moreover, similar to T (Ez),

Wp(Ez) depends on the structure of DBRTS and the bias voltage. Although
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equation (16) is similar to (13) in appearance, the numerical calculation of Jp
is much more difficult than that of the coherent tunnelling current Jc. In the
following section, we present numerical examples for the scattering rates and
tunnelling currents. Our numerical calculation (see Fig. 8 below) shows that Jp
mainly comes from the electron higher frequency interface phonons (especially
the interface phonons localised at either interface of the left barrier) scattering,
which is very important for understanding the phonon-assisted tunnelling process.

3. Numerical Results and Discussion

As an application of the theory given in Section 2, we have performed numerical
calculations for the electron–phonon scattering rate and for the coherent tunnelling
current and the phonon-assisted tunnelling current in a specially designed asymmetric
DBRTS A(0 ·25, 20 Å), where we define

A(x, d) ≡ GaAs(1000 Å)/AlxGa1−xAs(30 Å)/

GaAs (60 Å)/Al0 ·3Ga0 ·7As(d)/GaAs(1000 Å).

The physical parameters used in our calculations are the same as those of Shi
et al. (1997). Moreover, we assume m|| = mz. The doping concentration in the
emitter and the collector is the same and is fixed at 1018 cm−3.

Fig. 3 depicts the dispersion of the interface modes for structure A(0 ·25,
20 Å). Eight interface modes with different energies are found, which are very
important for further investigating electron–phonon scattering and phonon-assisted
tunnelling in the DBRTS. We can see from Fig. 3 that the four lower-frequency
modes occupy a much narrower frequency band than the four higher-frequency
modes. The dispersion of the interface modes is obvious in the case of the
wavenumber k ≤ 0 ·1 Å−1 and can be ignored in the region of k > 0 ·1 Å−1.

32.9

33.2

33.3

0 0.05 0.1 0.15

34

35

36

37
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33.1

(m
eV

)
_

k(A )-1

ω
h

Fig. 3. Dispersion curves of the interface modes for structure A(0 ·25, 20 Å).
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Fig. 4. Spatial dependence of the coupling functions Γ(k, z) divided by (h̄e2/Aε0)
1
2 for the

interaction between an electron and interface optical phonons for structure A(0 ·25, 20 Å)
(k = 0 ·01 Å−1). Here the numbers by the curves represent the interface-phonon frequency
in order of increasing magnitude: (a) for the four lower-frequency modes and (b) for the four
higher-frequency modes. The interfaces are localised at z = 0, 30, 90 and 110 Å respectively.
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Fig. 5. Absolute values |Γ(k, z)| divided by (h̄e2/Aε0)
1
2 as functions of k for the same structure

as in Fig. 3: (a) for the four lower-frequency modes and (b) for the four higher-frequency
modes. Here solid lines represent the interaction of an electron with the modes 1 and 5
[e–p(1) and e–p(5)], dashed lines represent e–p(2) and e–p(6), dash–dot lines represent e–p(3)
and e–p(7), and dash–dot–dot lines represent e–p(4) and e–p(8), respectively.



Coherent and Phonon-assisted Tunnelling 45

We know from previous studies (Shi and Pan 1995, 1996; Shi et al. 1997)
that the electron–interface–phonon coupling function Γ(k, z) in semiconductor
heterostructures is a very complicated function of coordinate z and wavenumber
k. We further investigate the characteristic of Γ(k, z) in Figs 4 and 5 so that
the electron–phonon interaction can be understood very well. Fig. 4 shows the
Γ(k, z)− z relation for the same DBRTS as in Fig. 3, where (a) is for the four
lower-frequency modes 1, 2, 3 and 4, and (b) is for the four higher-frequency
modes 5, 6, 7 and 8 named in order of increasing frequency. The electron–phonon
attractive or repulsive interactions are produced due to the complicated polarisation
of the crystal. The plots shown in Fig. 4 reveal an electron interaction with
different mode peaks at different interfaces. For example, the electron interaction
with mode 7 [denoted as e–p(7)] peaks at the z = 0 and 30 Å interfaces (i.e.
either interface of the left barrier), which is very important for understanding
the phonon-assisted tunnelling process (cf. Fig. 8). Fig. 5 presents the absolute
values |Γ(k, z)| as a function of wavenumber k for four lower-frequency modes in
(a) and for four higher-frequency modes in (b). We can see from Fig. 5 that
the electron–phonon coupling function Γ(k, z) is a very complicated function of
k. For example, the e–p(7) interaction decreases rapidly for 0 < k ≤ 0 ·01 Å−1

and slowly for 0 ·01 Å
−1

< k < 0 ·08 Å
−1

, and then decreases rapidly again for
k > 0 ·08 Å

−1
. Fig. 5 indicates that the seventh interface mode is much more

important than the other modes in our asymmetric DBRTS. The results shown in
Fig. 8a also strongly support this conclusion. Figs 4 and 5 clearly show that the
four higher-frequency modes produce intensive polarisation in the DBRTS and
cause a large interaction with electrons. On the contrary, the four lower-frequency
modes give a weak interaction with electrons compared with the higher-frequency
modes, which can be ignored. In the following calculations, we will thus only
consider the contribution of the four higher-frequency modes to the scattering
rate and the phonon-assisted tunnelling current for simplicity.

Fig. 6 shows the scattering rate divided by (Nph +1) as a function of the incident
electron energy Ez for the same structure as in Fig. 3 at the bias voltage V = 150
mV. The doping concentration in the emitter (and in the collector) is assumed to
be n = 1018 cm−3, and the corresponding Fermi energy level at room temperature
is EF = 42 ·5 meV. Fig. 6 shows that the contribution of interface phonons is larger
than that of LO bulk-like phonons for lower incident electron energies (Ez ≤ 180
meV). We know from the Fermi distribution function that the emitter states are
appreciably populated only for Ez ≤ EF + kBT = 68 ·3 meV (as T = 300 K).
Hence, we can infer that the interface phonons are much more important than
the confined bulk-like LO phonons for the phonon-assisted tunnelling current.
Our following numerical calculations (cf. Fig. 8c) strongly support this analysis.
Fig. 6 also indicates that the total scattering rate has its maximum at Ez

.= 154
meV. We know from our numerical calculations that Ez = 154 meV corresponds
to the second resonant level at v = 150 mV. The overlap integral between the
confined state in the well and the second resonant state has the largest value.
Hence, the electron–phonon scattering rate has a maximum at Ez

.= 154 meV. In
order to further investigate the influence of the conduction band nonparabolicity
on electron–phonon scattering, we have calculated the electron–phonon scattering
rate in considering the subband nonparabolicity. The result is presented as the
dash–dot–dot line in the figure which shows that the subband nonparabolicity
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has a large influence on the electron–phonon scattering. The position of the
peak shifts to a lower energy, and its value decreases under the influence of the
subband nonparabolicity. Moreover, it is interesting to compare the relaxation
time 1/Wp(Ez) with the electron dwell time in the quantum well. Fig. 6 shows
that the relaxation time in our DBRTS is of the order of 10 to 100 ps. The
dwell time in a symmetric Al0 ·4Ga0 ·6As/GaAs/Al0 ·4Ga0 ·6As with a well width
of 50 Å is also of the order of 10 to 100 ps (Liu and Sollner 1994). Although
an exact result for the dwell time is expected for our asymmetric structure, the
electron dwell time and the relaxation time are comparable.

E (meV)

0 100 200 300

0.05

0.1

0

z

W
(p

s 
)-

1

Fig. 6. Electron–phonon scattering rate W divided by (Nph + 1) as a
function of the incident electron energy Ez for the structure in Fig. 3 at
the bias voltage V = 150 mV. The dashed line and dash–dot line represent,
respectively, the contribution of the interface phonons and confined bulk-like
LO phonons, and the solid line is their sum in the absence of subband
nonparabolicity. The dash–dot–dot line is the total scattering rate including
subband nonparabolicity.

Fig. 7 shows the coherent tunnelling current-to-voltage curve calculated at
room temperature for the same DBRTS as in Fig. 3, in which the subband
nonparabolicity is included. This figure clearly indicates that the NDR of the
DBRTS is formed when the electrons tunnel from the emitter to the collector (Jc→).
The tunnelling current from the collector to the emitter (Jc←) monotonically
decreases when the applied bias voltage increases, and this current can be ignored
when the voltage is large enough, e.g. V > 150 mV. Therefore, in the following
we are only concerned with the characteristics of Jc→ and its dependence on the
structure parameters of the DBRTS.

In the case where subband nonparabolicity is included, phonon-assisted
tunnelling current-to-voltage curves are shown in Fig. 8 at room temperature for
the structure A(0 ·25, 20 Å). Fig. 8a shows the tunnelling current assisted by the
four higher-frequency interface phonon modes and their sum. We can see from
Fig. 8a that the seventh interface mode, which is localised at either interface of
the left barrier, is the most important of all of the interface modes, and this
result is consistent with the results shown in Figs 4 and 5. The total interface
phonon-assisted tunnelling current is very complicated and has two peaks as
the voltage increases. Fig. 8b gives the confined bulk-like LO phonon-assisted
tunnelling current density in the structure A(0 ·25, 20 Å). This figure clearly
indicates that the phonon-assisted tunnelling current from the LO phonons in the
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Fig. 7. Coherent tunnelling current-to-voltage curve calculated at room
temperature for the same DBRTS as in Fig. 3. The dashed line is for
electron tunnelling from the emitter to the collector, the dash–dot line is
for electron tunnelling from the collector to the emitter and the solid line
is the total coherent tunnelling current density.

well is much larger than those from the LO phonons in the two barrier layers and
has a complicated behaviour when the bias voltage increases. Fig. 8c presents
the total phonon-assisted tunnelling current density including the interface and
the confined bulk-like LO phonons. We can see from Fig. 8c that the interface
phonon-assisted tunnelling current is larger by one order of magnitude than
the confined LO-phonon-assisted tunnelling current for our chosen sample. This
is because the interface-phonon scattering is much more important than the
confined LO phonon scattering (cf. Fig. 6). Fig. 8c also shows that the total
phonon-assisted tunnelling current is a very complicated function of the applied
voltage and has two peaks. This is similar to the result of Mori et al. (1992).
Moreover, Fig. 8 clearly indicates that the phonon-assisted tunnelling current is
mainly determined by scattering between electrons and higher frequency interface
phonons (especially the interface phonons localised at either interface of the left
barrier). This physical picture of the phonon-assisted tunnelling is important for
further understanding the phonon-assisted tunnelling process and for designing
better resonant tunnelling devices.

Fig. 9 shows the total current-to-voltage curve at room temperature for the
same DBRTS as in Fig. 3, including coherent and phonon-assisted tunnelling
currents. This figure shows that phonon-assisted tunnelling increases the valley
current and decreases the PVR. The results shown in Fig. 9 are similar to those
of Roblin and Liou (1993) and Mains and Haddad (1988), in which very different
methods were adopted.

Fig. 10 represents the current-to-voltage characteristic curves at different
temperatures and the influence of the conduction band nonparabolicity on the
current-to-voltage curve for the structure A(0 ·25, 20 Å). This figure shows that
at low temperature T = 100 K, the current-to-voltage curve has a larger peak, a
lower valley, and a larger PVR (=6 ·17). As for the result of T = 300 K (room
temperature), we find that the current-to-voltage curve has a slightly lower peak,
a larger valley current, and a small PVR (=2 ·47). Moreover, Fig. 10 also shows
that the width of the NDR region at room temperature is narrower than that at
low temperature. We can also see from Fig. 10 that the subband nonparabolicity
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has a large influence on the current-to-voltage characteristic curve. For example,
if we consider the subband nonparabolicity, the PVR of the current-to-voltage
curve will be reduced from 2 ·74 (without the nonparabolicity effect) to 2 ·47.
Hence, the subband nonparabolicity is also an important factor which must be
considered in resonant tunnelling processes.
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Fig. 8. Phonon-assisted tunnelling current-to-voltage curves at room temperature for structure
A(0 ·25, 20 Å), including the subband nonparabolicity: (a) Interface phonon-assisted tunnelling:
the dashed line represents the fifth interface modes contribution for the tunnelling current, the
dash–dot–dot line for the sixth mode, the thin solid line for the seventh mode, the dash–dot line
for the eighth mode and the heavy solid line is their sum. (b) LO phonon-assisted tunnelling:
the dashed line represents the confined LO phonon in the left barrier (Al0 ·25Ga0 ·75As)
contribution for the tunnelling current, the dash–dot line for the LO phonon in the right
barrier (Al0 ·3Ga0 ·7As), the thin solid line for the confined bulk-like LO phonon in the well
(GaAs) and the heavy solid line is their sum. (c) Interface phonon-assisted tunnelling current
(thin solid line), confined LO phonon-assisted tunnelling current (dashed line) and their sum
(heavy solid line).

In order to compare the current-to-voltage characteristics in asymmetric and
symmetric DBRTSs and to explore the advantages of the asymmetric DBRTS, we
have also studied the tunnelling current density for DBRTS A(0 ·3, d) with d = 20,
30 and 40 Å. The calculated results show that when the right barrier thickness d
increases, the peak current decreases, the PVR increases, and the peak position
shifts towards higher bias voltage. These three characteristics are in agreement
with recent experimental results (Schmidt et al. 1996). Moreover, we have also
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Fig. 9. Total current-to-voltage characteristic curve at room temperature
considering the subband nonparabolicity for the same asymmetric DBRTS
as in Fig. 3. The dashed line stands for the coherent tunnelling current
density. The solid line is the total tunnelling current density combining
coherent and phonon-assisted tunnelling currents.
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Fig. 10. Current-to-voltage characteristic curves including coherent and
phonon-assisted tunnelling for the same asymmetric DBRTS as in Fig. 3 at
T = 100 K (the dash–dot line includes the subband nonparabolicity) and
T = 300 K (the solid line ignores the nonparabolicity, and the dashed line
includes the nonparabolicity).

studied the current-to-voltage characteristics for A(x , 30 Å) with x = 0 ·2, 0 ·25,
0 ·3 and 0 ·35. The calculated results are shown in Fig. 11. This figure clearly
indicates that the peak current and absolute value of the negative differential
conductivity are higher for a structure with lower x and hence lower left barrier.
We can attribute the above trend to two physical reasons. First, a structure
with a lower left barrier has a higher peak transmission coefficient. Secondly,
the bias raises the left barrier top to the right one. A structure with a lower
left barrier can compensate the latter effect and hence can cause the left and
right barrier tops to locate at similar energy levels under resonant bias. For
example, the left and right barrier tops in the x = 0 ·2 asymmetric DBRTS under
resonance bias are closer than that in the symmetric one with x = 0 ·3. As is
known, a DBRTS with the same or similar left and right barrier potential can
achieve an enhanced transmission coefficient. Based on the above two physical
reasons, we can understand why an asymmetric DBRTS with lower left barrier
height can improve performance. These theoretical results need to be confirmed
by experiment.
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Fig. 11. Current-to-voltage curves calculated at room temperature for
structures A(x , 30 Å) with doping density n = 1018 cm−3. The solid line
is for x = 0 ·2, the dashed line for x = 0 ·25, the dash–dot line for x = 0 ·3
(symmetric DBRTS), and the dash–dot–dot line for x = 0 ·35.

4. Summary

In this paper, an important physical picture on coherent and phonon-assisted
tunnelling in a general asymmetric DBRTS is presented. The electron–phonon
interaction, scattering and the phonon-assisted tunnelling current were investigated
in detail for a specially designed asymmetric structure A(0 ·25, 20 Å), within
the framework of the dielectric continuum model. All of the phonon modes
were included and the conduction band nonparabolicity was also considered.
The importance of the different phonon modes was analysed. The current-to-
voltage characteristic curves were analysed and compared between asymmetric
and symmetric DBRTS. The main results obtained in the present paper can be
summarised as follows:

(1) The most important characteristics of the coherent tunnelling current-to-
voltage curve can be directly determined by both the width of the resonant level
and the peak value of the transmission coefficient on the resonant level. The
NDR of a DBRTS is formed and determined by electron tunnelling from the
emitter to the collector.

(2) There are eight interface phonon modes in a DBRTS. Different modes
are localised at different heterointerfaces. The four higher-frequency modes (i.e.
modes 5 to 8, especially the seventh one which peaks at either interface of the
left barrier) are much more important than the four lower-frequency modes (i.e.
modes 1 to 4) for the electron–phonon interaction, electron–phonon scattering,
and phonon-assisted tunnelling. The confined LO phonons in the well layer are
more important than those in the two barrier layers. The interface phonons are
much more important than the confined LO phonons.

(3) The peak current is reduced, the position of peak current is shifted to a
higher voltage, and the PVR is enlarged if the right-barrier width is increased
when the two barriers have the same height. The peak current is increased by
suitably decreasing the left-barrier height when the two barriers have the same
width.

(4) The PVR of a RTD at a lower temperature is larger than that at a higher
temperature. Moreover, the higher the temperature, the narrower the width of
the NDR region of the tunnelling current-to-voltage curve.
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(5) The phonon-assisted tunnelling current mainly comes from the scattering
of electron higher frequency interface phonons (especially the interface phonons
localised at either interface of the left barrier), which increases the valley current
and decreases the PVR of the DBRTS.

(6) The subband nonparabolicity has a significant influence on electron–phonon
scattering, phonon-assisted tunnelling, and the current-to-voltage characteristic
of a RTD.

As stated above, phonon-assisted tunnelling and subband nonparabolicity are
two important factors for increasing the valley current of the DBRTS. An
asymmetric DBRTS with a suitably designed structure may have an improved
performance over the commonly used symmetric DBRTS. The results obtained
in this paper are useful for analysing and understanding scattering process and
decoherence and for potentially important resonant tunnelling device designs and
applications in the near future.
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