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Abstract

As electronic circuits get progressingly smaller to the nanometre scale, the quantum wave
nature of the electrons starts to play a dominant role. It is thus possible for the devices
to operate by controlling the phase of the quantum electron waves rather than the electron
density as in present-day devices. This paper presents a highly accurate numerical method to
treat quantum waveguides with arbitrarily complex geometry. Based on this model, a variety
of quantum effects can be studied and quantified.

1. Introduction

It is known that as electronic circuits get smaller and smaller to the nanometre
scale, device analysis based on semiclassical transport theories, such as using the
Boltzmann rate equation, will eventually fail. This is because the characteristic
dimensions of nanometre structures are comparable to the wavelength of an
electron with energy from meV to a few eV, and thus the quantum wave nature
of the electrons starts to play a dominant role. For instance, the wavelength of
an electron with energy 1 meV is about 40 nm. For an electron with energy of
1 eV, its wavelength is about 1 ·2 nm. Very recent advances in semiconductor
fabrication technology have already allowed construction of mesoscopic structures
from 100 nm to 1 nm in size and confined in two, one and zero dimensions [for
an overview see Sohn (1998), for quantum dots see Kouwenhoven (1998), for
carbon nanotubes see Tans et al. (1998) and for single-atom-chain nanowires see
Yanson et al. (1998)]. These nanostructures are expected to become the building
blocks of the next-generation electronics.

A pressing challenge to theory is to provide an accurate prediction of quantum
transport and interference in these nanostructures, such as nonlocal effects,
resonant tunnelling, Coulomb blockade, low dimensionality effects, Aharanov–
Bohm interference, electron–electron correlation, and spin exchange coupling. In
fact, the size of electronic components cannot be scaled down much further
without properly dealing with the quantum effects that emerge on the nanometre
scale. The next-generation ultra-fast computers with lower consumption and more
compact circuits will need to take advantage of quantum mechanical phenomena.

∗ Refereed paper based on a talk presented to the Workshop on Nanostructures and Quantum
Confinements, held at the Australian National University, Canberra, in December 1998.
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One of the possibilities is for the devices to operate by controlling the phase of a
few electrons rather than the electron density as in present-day devices. In this
way, less energy is required and fast switching times can be achieved. Another
possibility is to establish communications between quantum wires and quantum
dot cells through the nonlocality nature of the electron waves without the need
of traditional wires to propagate information.

By pushing devices to such an extreme, a classical ‘billiard-ball ’ description of
electron motion is no longer valid, and neither is a semiclassical description of
electron densities via Boltzmann-type rate equations. Theoretical calculations of
these device properties require a full quantum mechanical treatment. This paper
aims to establish a highly accurate and effective theoretical model of nanometre
scale quantum waveguides by directly solving the time-dependent Schrödinger
equation

i
∂ψ(r, t)
∂t

= Hψ(r, t) . (1)

2. Theory

As a prototype case, we examined a nanometre-scale ring structure shown
schematically in Fig. 1a. Such a device can be made by electron-beam lithography
as described by Kane et al. (1998). The middle metal gate (i.e. the light grey
area) is biased positively to induce conduction electrons in the semiconductor
layer. The side and central gates (i.e. the dark grey area) are biased negatively to
confine the conduction electrons in a narrow tunnel. The confinement potential
is depicted in Fig. 1b. Electron transport between the source and the drain
is dependent on quantum waves propagating around the ring and undergoing
interference with reflections from the potential barriers. These barriers can be
raised or lowered by changing the negative voltage applied to the metal gates.

The quantum-wire fabrication technique developed by Kane et al. (1998)
eliminates the need for a dopant layer in the heterostructures adjacent to the
2D electrons. Consequently, the quantum cavity is free of impurity that may
be introduced by modulation doping and thus has essentially perfect crystalline
structure. Both the electron mean free path and the phase coherence length
are greater than the sample dimension, and there are no holes. The conduction
electron density in the nanowire can be controlled by adjusting the middle gate
voltage and is typically around 1010 cm−2, equivalent to one electron in an area
of 100 nm ×100 nm (Kane et al. 1998; O’Brien 1999).

Of course there are many other electrons in the semiconductor, but the rest of
them are tightly bound to the nuclei in the solid. Such nanostructures are frequently
referred to as single-electron tunnelling devices, since their central channels often
hold but a single conduction electron. In this case, the electron–electron
correlation effect on electron transport properties is small. This independent
electron approximation of mesoscopic structures is supported by many experiments
(Webb 1998). Also, at low temperatures of several Kelvin, the energy of phonons
is too low to interact with the electrons and often neglected (Jacak et al. 1998).
If, in addition, the few conduction electrons in the semiconductor stay near the
bottom of the conduction band during the tunnelling process and the external
potential is not strong enough to induce interband transitions, the standard
single-electron effective-mass approximation is then valid.
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Fig. 1. (a) The side and top view of the device. The dark grey regions are negatively charged metal gates and the light grey area is positively
charged. (b) The confinement potential.
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Because of the interaction with the crystal lattice in the quantum wires,
the conduction electrons appear to have a different mass from me (Tanner
1995). In this case, the time-dependent Schrödinger equation for describing a
two-dimensional electron motion in the potential of the lattice plus the potential
of an applied external potential V (x, y) is given as

i
∂ψ(r, t)
∂t

= − h̄2

2m∗

(
∂2

∂x2 +
∂2

∂y2

)
ψ(x, y, t) + V (x, y)ψ(x, y, t) , (2)

where m∗ is the effective mass of the semiconductor material. For GaAs, the
effective mass m∗ is 0 ·066 a.u.

Current theoretical work on quantum waveguides is predominantly based on
the separability of time and spatial variables, which leads to the time-independent
Schrödinger equation

Hψ(r, t) = Eψ(r, t)

(Jin et al. 1999; Varshini 1998; Nikolic and Sodan 1998; Gu et al. 1998; Carini
et al. 1997; Clark and Bracken 1996; Tachibana and Totsuji 1996; Popov and
Popova 1996). What distinguishes nanostructure analysis from most previous
applications of quantum mechanics is that boundaries often play a central role in
controlling the magnitude, phase and direction of electron transport. This poses
a serious challenge to conventional time-independent methods and often defies an
adequate solution. In some cases, a special transformation is required to obtain
simpler boundaries in the new coordinate system, but this normally gives rise
to more complicated differential equations (Clark and Bracken 1996). For this
reason, generally structures with very simple geometry have been studied.

The time-dependent approach aims to obtain a full solution of the time-
dependent Schrödinger equation directly. The formal solution has been known
for a long time as (Goldberger and Watson 1964; Taylor 1972)

ψ(x, y, t+ ∆t) = exp(−ıH∆t)ψ(x, y, t) ,

but computational techniques for treating the exponential time propagator
exp(−ıH∆t) have been slow to develop and practical calculations have had
to await the arrival of powerful computers. Different approximations to the
exponential time propagator exp(−ıH∆t), along with the technique used to
evaluate the action of the Laplacian ∇2 on the wave function, lead to different
time evolution schemes.

In an earlier publication (Wang and Scholz 1998), we discussed several
time-dependent approaches including the Euler expansion, the first and second
order difference schemes, the Taylor expansions, the split operator method, and
the Chebyshev scheme. We applied the Chebyshev scheme to 1D potential
scattering and our results were in excellent agreement with exact solutions. A
comprehensive discussion on the time-dependent quantum mechanical approaches
especially related to reactive scattering can be found in the review article written
by Balakrishnan et al. (1997). We also studied 2D electron propagation through
a double barrier using the Chebyshev scheme (Wang and Midgley 1999). This
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paper extends our previous work to investigate electron wave propagation in a
nanometre-scale ring structure.

Briefly, the Chebyshev scheme approximates the exponential time propagator
by a Chebyshev polynomial expansion:

ψ(x, y, t) = exp[−ı(Emax + Emin)t/2]
N∑
n=0

an(α)φn(−ıH̃)ψ(x, y, t = 0) , (3)

where Emax and Emin are the upper and lower bounds on the energies sampled by
the wave function, α = (Emax−Emin)t/2, an(α) = 2Jn(α) except for a0(α) = J0(α),
Jn(α) are the Bessel functions of the first kind, φn are the Chebyshev polynomials,
and the normalised Hamiltonian is defined as

H̃ =
1

Emax − Emin

[2H− (Emax + Emin)] . (4)

The above normalisation ensures that the expansion of Chebyshev polynomials
is convergent. Since the Bessel function falls to zero exponentially as n increases
beyond α, it follows that terminating the expansion at N > α would yield accurate
results. Note that α is proportional to the time step t and so is the number
of terms required in the expansion. Since the time step t can be arbitrarily
large, this scheme is often used as a one-step propagator to cover the complete
interaction.

3. Results and Discussion

A major concern with such a time-dependent propagation approach is its accuracy
in obtaining the final system wave function, because errors accumulated over
many time steps may cause severe distortion of the wave functions. Even for
one-step time propagators, such as the Chebyshev scheme used in this work,
errors may accumulate when using the recursion relation to calculate the higher
order terms in the expansion. The typical number of iterations range from a
few hundred to several thousand. Therefore, before the Chebyshev scheme can
be used to model various systems, the scheme needs to be checked against a set
of criteria.

First of all, the norm of the wave function must be conserved throughout
the time-evolution since there is no loss of flux anywhere. This test is very
effective in verifying the model because the Chebyshev scheme is not unitary by
definition. Consequently, if the norm is preserved it is a good indication that
the expansion is accurate. Secondly, since we are dealing with closed systems,
the energy should also remain constant. This is a basic requirement of quantum
mechanics. Thirdly, consistency under time reversal is another requirement of
quantum mechanics. If the wave function is propagated for some time and then
propagated backward in time to its original position, any significant numerical
error will cause the final wave function to be different from the initial one.
Consistency under time reversal is extremely sensitive to numerical errors.

The potential chosen to demonstrate compliance with the above tests is shown
in Fig. 1b The height of the potential walls is 3 ·676× 10−2 a.u., while the space
spanned by the potential is 20000 × 10000 a.u. The incoming electron has a
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Fig. 2. Propagation of the wave function through the potential: (a) the initial wave function and (b)–(f) the wave function at the end of each time
step.
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Fig. 3. Error between forward and reversed propagation: (a) the error between the initial and the final time-reversed wave function and (b)–(f) the
error between the wave function at the end of each time step and the wave function propagated backwards to the same time.
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dominant energy of 3 ·0× 10−2 a.u. with a spread in momentum of 7 ·5%. The
width of the propagation channel is 2000 a.u. and the radius of the ring is also
2000 a.u. The total time of propagation is 0 ·1687× 105 a.u., which was split up
into six equally spaced time steps of 0 ·2812× 104 a.u.

The propagation of the wave function is shown in Fig. 2. Part (a) is the initial
wave function with (b)–(f) showing the wave function at the end of each time
step. As shown, the wave function travels along, hits the middle pole of the ring,
and part of the wave function reflects from the pole with the rest propagating
around it.

Fig. 3 shows the error between the wave function propagated forward in time
and the wave function propagated backward in time to the same position. This
error is the difference between the two wave functions divided by the maximum
value of the forward propagated wave function. Part (a) is the error between
the initial wave function and the returned wave function. Parts (b)–(f) show the
error between the forward wave function and the wave function propagated back
to the same position. As can be seen the error is about 1014 times smaller than
the amplitude of the corresponding wave function, indicating that the propagation
scheme is extremely accurate and self-consistent.

Throughout the propagation, the relative change in the norm of the wave
function and the relative change in energy of the system were both of the order
of 10−14. The comparison with the known solution of free space propagation
is also extremely good and the error is approximately 10−16, which is of the
order of the machine accuracy (double precision). The addition of a non-zero
potential introduces negligible error, but the computational time and working
arrays increase due to the requirement of a finer grid.

The amount of memory required to perform the above calculations was 87 MB
and the grid size was 1176× 420 (which corresponds to 493,920 double precision
complex numbers or 7 ·5 MB of memory for each array). The total time for
the calculations was approximately 1 1

2 hours on a 500 MHz Digital Personal
Workstation (Alpha processor) with 256 MB of memory. The derivatives required
for the Hamiltonian were computed using the Fourier transform method (Wang
and Scholz 1998) using the FFTW package.∗

Since the wave function contains complete quantum mechanical information
about the system under study, we can derive from it all possible observables
such as the reflection and transmission coefficients, the lifetime of trapped states,
resonance, interference, and phase shifts. The energy spectrum (or the density of
states) can also be obtained from the time propagation of system wave functions
by using the time–energy Fourier transform. In this way, one can filter out
intensity weighted spectra from the correlation function defined as the overlap
integral of the wave function at time t with the initial wave function (Feagin
1994; Tomsovic and Heller 1993).

4. Conclusion

The Chebyshev scheme provides a very powerful tool to model the propagation
of electrons through arbitrarily shaped quantum waveguides. This scheme can
be readily applied to examine many different types of systems. Of interest are

∗ The FFTW package was developed at MIT by Matteo Frigo and Steven G. Johnson, see
http://www.fftw.org.
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conductance fluctuation in nano wires, trapped states in bent nano wires, resonant
tunnelling through barriers, and many more. The introduction of electric and
magnetic fields is also straightforward. This model can be further extended to
include deformation of confinement potentials due to the transport of electrons,
which is a real effect in experimental work.
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