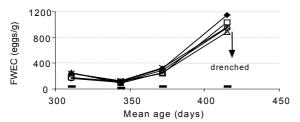
LIFETIME WOOL. 10. PROGENY FAECAL WORM EGG COUNTS

B.L. PAGANONI^A, R. BANKS^B, C.M. OLDHAM^A and A.N. THOMPSON^C


^A Department of Agriculture Western Australia, South Perth, WA 6011

^B Meat and Livestock Australia, North Sydney, NSW 2059

^C Primary Industries Research Victoria, Department of Primary Industries, Hamilton, Vic 3300

Nutritional programming, or the provision of additional protein in early life, enables animals to better resist the effects of disease and parasitism, and contributes to higher production in later life (Nolan 1999). There is also evidence that poor nutrition and stress during pregnancy can influence the development of the immune system in the foetus, and that these effects may persist for the lifetime of the animal (Cronje 2003). The impacts of maternal nutrition on an animal's resistance and resilience to gastrointestinal parasitism have not been studied. The effects of ewe nutrition on faecal worm egg counts (FWEC) of the progeny in the plot-scale experiments in Lifetime Wool (Thompson and Oldham 2004) were measured to about12 months of age.

The animals used in this study were born in August-September and July-August 2002 for the Victorian and Western Australian sites, respectively. The progeny were from ewes fed differently through pregnancy and lactation (Ferguson *et al.* 2004), and the progeny at each site had grazed as a single flock from weaning. The FWECs were monitored monthly, and sheep were drenched when flock average FWEC exceeded 500 eggs/g. When the monthly sample indicated a flock average FWEC of > 300 eggs/g, samples were taken from all the progeny. The FWEC data were log transformed before statistical analysis.

drenched dre

Figure 1. Faecal worm egg counts (FWEC) for Western Australian progeny during their first postweaning winter/spring for FOO treatments 1000 (\blacklozenge), 1300 (\Box), 1600 (\triangle), 2000 (\succ) and 3000 (\bigcirc) (Solid bars = s.e.m.).

Figure 2. Faecal worm egg counts (FWEC) for Victorian progeny during their first post-weaning winter/spring for FOO treatments 800 (black), 1100 (white), (1400 (grey), 2000 (stripes) and 3000 (spots).

Ewe nutrition to mid-pregnancy did not have any significant effect on progeny FWEC at either site. At weaning of the progeny at the Western Australian site, the average FWEC for Feed on Offer (FOO) treatments 1000, 1300 and 1600 kg DM/ha were 1000, 1190 and 1280 eggs/g, respectively. The FWEC for the 1600 FOO treatment was higher (P<0.001) than that for the 3000 FOO treatment (760 eggs/g). Thereafter, FWEC stayed relatively low throughout early winter, but increased rapidly in the spring, but at no time were there significant differences in FWEC between the groups (Figure 1). The progeny at the Victorian site were drenched repeatedly over the winter to avoid ill thrift, and there were no significant differences in FWEC between treatments at any of the sampling times (Figure 2). It would appear that the effects of maternal nutrition on the resistance/resilience to parasites are only minor, at least in these progeny, until the age of 12 months.

CRONJE, P. (2003). In 'Proceedings of the 6th International Symposium on the Nutrition of Herbivores.' pp 321-32 (Merida: Yucatan, Mexico.)
FERGUSON, M., PAGANONI, B. and KEARNEY, G. (2004). Anim. Prod. Aust. 25, (This proceedings). NOLAN, J.V. (1999). Rec. Adv. Anim. Nutr. 12, 7-14.
THOMPSON, A.N. and OLDHAM, C.M. (2004). Anim. Prod. Aust. 25, (This proceedings).

Email: bpaganoni@agric.wa.gov.au