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ABSTRACT

In stratified random sampling when several characteristics are to be estimated simultaneously, an
allocation that is optimum for one characteristic may be far away from optimum for others. To
resolve this conflict the authors formulate the problem of determining optimum compromise allocation
as a nonlinear programming problem (NLPP ). The allocation obtained is optimum in the sense that
it minimizes the sum of weighted variances of the estimated population means of the characteristics
subject to a fixed sampling cost. The formulated NLPP is treated as multistage decision problem
and solved using dynamic programming technique. A numerical example is presented to illustrate
the computational details.
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I. INTRODUCTION

Stratified sampling is the most popular among vari-
ous sampling designs that are extensively used in sample
survey. When a stratified sampling is to be used a sam-
pler has to deal with three basic problems such as (i)
the problem of determining the number of strata, (ii) the
problem of cutting the stratum boundaries and (iii) the
problem of optimum allocation of sample sizes to various
strata. In this present paper the problem (iii) when more
than one characteristics are under study is discussed.

The problem of allocation with more than one char-
acteristics in stratified sampling is conflicting in nature,
as the best allocation for one characteristic will not in
general be best for others. Some compromise must be
reached to obtain an allocation that is efficient for all
characteristics. The problem was first considered by Ney-
man (1934). He pointed put that an allocation would be
reasonably efficient for all characteristics if the charac-
teristics themselves are positively correlated. However, in
the absence of a strong positive correlation between char-
acteristics when individual optimum allocation may dif-
fer a lot and there may be no obvious compromise, many
authors such as Neyman (1934), Geary (1949), Dalenius
(1957), Ghosh (1958), Aoyama (1963), Chatterjee (1967),
Kokan and Khan (1967), Bethel (1989), Jahan, Khan and
Ahsan (1994), Khan, Jahan and Ahsan (1997), etceteras,
have made attempts for an acceptable allocation by ei-
ther suggesting new criteria or exploring existing criteria
further.

In this paper a more general problem of obtaining op-
timum allocation, when the cost of survey is fixed, is for-
mulated as a nonlinear programming problem (NLPP )

to minimize the sum of weighted variances of estimated
population means. Since the functions involved are sep-
arable with respect to stratum sample size, the NLPP
is treated as a multistage decision problem and an ex-
plicit solution procedure using dynamic programming
technique is presented.

II. THE PROBLEM

Let p independent characteristics are under study in
a survey of a population with L strata. The variance of
the stratified sample mean yjst, an unbiased estimate of
population mean Y j , for jth characteristic is

V (yjst) =
L∑

h=1

W 2
hS2

jh

nh
−

L∑

h=1

W 2
hS2

jh

Nh
; j = 1, 2, ..., p.

In a problem of stratification the loss in precision in
the estimate of a characteristic increases, if the charac-
teristic in a stratum is not internally homogeneous. To
refrain from this increase in loss of precision the authors
conjecture the following. If the jth characteristic in hth
stratum (h = 1, 2, ..., L) is more heterogeneous, it pro-
duces more loss in precision in the estimate of stratum
mean, as the value of stratum variance S2

jh for that char-
acteristic is expected to be high. This results a high sam-
pling variance V (yjst). A way to restrain this increase in
the loss of precision is to assign a maximum weight wj

to jth characteristic as

wj = max(aj1, aj2, ..., ajL). (1)
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Where ajh are the weights for jth (j = 1, 2, ..., p) char-
acteristic in hth (h = 1, 2, ..., L) stratum and are ob-
tained in proportion to their stratum variances S2

jh, that

is, ajh α S2
jh. Letting

p∑

j=1

ajh = 1, ajh are worked out as

ajh =
S2

jh∑p
j=1 S2

jh

; j = 1, 2, ..., p and h = 1, 2, ..., L. (2)

When the cost of survey is prefixed, it may be a reason-
able criterion for determining an optimum allocation is to
maximize the sum of weighted variances of the estimated
population means, that is,

Minimize
p∑

j=1

wjV (yjst). (3)

Note that (3) is unlike the criterion due to Yates (1960)
where the weights, wj , are specified according to the im-
portance of jth characteristics and are then used to form
a linear combination of the variances V (yjst). The weak-
ness of this compromise allocation is the arbitrariness in
the choice of the importance weights, wj .

For a fixed cost C, when nh (h = 1, 2, ..., L) is the
required allocation, c0 is the overhead cost and ch is the
cost of measuring of all characteristics in hth stratum,
the problem of determining an optimum allocation may
be expressed as the following NLPP :

Minimize
p∑

j=1

wjV (yjst) =
p∑

j=1

wj

L∑

h=1

W 2
hS2

jh

nh
−

p∑

j=1

wj

L∑

h=1

W 2
hS2

jh

Nh

subject to c0 +
L∑

h=1

chnh ≤ C and 2 ≤ nh ≤ Nh; h = 1, 2, ..., L (4)

The bounded variable restrictions 2 ≤ nh ≤ Nh; h =
1, 2, ..., L are imposed in the NLPP (4) to meet the prob-
lem of estimating stratum variances and over sampling.

For the purpose of minimization the second term of
objective function in (4) could be ignored, as it is inde-
pendent of nh. Further taking wj inside the summation∑L

h=1, interchanging the order of summations and let-
ting A2

h =
∑p

j=1 wjS
2
jh, the NLPP (4) may be rewritten

as:

Minimize
L∑

h=1

W 2
hA2

h

nh

subject to
L∑

h=1

chnh ≤ C0

and 2 ≤ nh ≤ Nh; h = 1, 2, ..., L (5)

where C0 = C − c0. Note that if ch = 1 (h = 1, 2, ..., L),
the NLPP (5) reduces to the problem of minimizing the
sum of weighted variances of the estimated population
means subject to fixed sample size.

III. THE SOLUTION

It is observed that the objective function and the con-
straints of the NLPP (5) are separable functions of nh.
It allows us to treat (5) as a sequence of interrelated

multistage decision making problem that takes place in
L stages. The dynamic programming technique may be
used to solve (5) by dividing the L-stage and L-variable
problem into L-stage single variable problems. The kth
(k = 1, 2, ..., L) stage provides the optimum allocation,
n∗k, for kth stratum.

Consider the following sub problem of first k strata:

Minimize
k∑

h=1

W 2
hA2

h

nh

subject to
k∑

h=1

chnh ≤ Ck

and 2 ≤ nh ≤ Nh; h = 1, 2, ..., k (6)

where Ck is the available budget for the first k strata
satisfying Ck ≤ C0 and k ≤ L. Let f(Ck) denotes the
minimum value of the objective function of (6), that is,

f(Ck) = min [
k∑

h=1

W 2
hA2

h

nh
|

k∑

h=1

chnh ≤ Ck

and 2 ≤ nh ≤ Nh; h = 1, 2, ..., k].

With the above definition the problem (5) is equivalent to
find f(CL) recursively by finding f(Ck) for k = 1, 2, ..., L
and for all feasible Ck satisfying

2
k∑

h=1

ch ≤ Ck ≤ C0 − 2
L∑

h=k+1

ch. (7)
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We may write

f(Ck) = min [
W 2

k A2
k

nk
+

k−1∑

h=1

W 2
hA2

h

nh
|

k−1∑

h=1

chnh ≤ Ck − cknk

and 2 ≤ nh ≤ Nh; h = 1, 2, ..., k].

For a fixed value of nk over

2 ≤ nk ≤ min (C
′

k , Nk) (8)

where C
′

k is the maximum possible sample size that can
be drawn from kth stratum within the available budget
Ck, that is,

C
′

k =
Ck − 2

∑k−1
h=1 ch

ck
. (9)

The function f(Ck) is given by

f(Ck) =
W 2

k A2
k

nk
+ min[

k−1∑

h=1

W 2
hA2

h

nh
|

k−1∑

h=1

chnh ≤ Ck − cknk

and 2 ≤ nh ≤ Nh; h = 1, 2, ..., k − 1]
(10)

By the definition of f(Ck), the term inside [ ] in (10) is
the value of f(Ck−1). Consequently, if f(Ck−1) is known
for all feasible Ck−1 satisfying (7), the recursive relation-
ship relating the functions f(C1), f(C2), ..., f(Ck) for the
problem (6) is

f(Ck) = min
2≤nk≤min(C

′
k ,Nk)

[
W 2

k A2
k

nk
+ f(Ck−1)

]
(11)

Initially we set f(C0) = 0. The NLPP (5) is equivalent
to find f(CL). If (11) is solved recursively for each k =

1, 2, ..., L, f(CL) is solved. The optimum allocation n∗L
is obtained from f(CL), n∗L−1 is obtained from f(CL−1)
and so on until finally n∗1 is obtained.

IV. NUMERICAL EXAMPLE

To illustrate the suggested procedure discussed in ear-
lier sections, the authors present the following example.
For this purpose, data from Sukhatme et al (1984) have
been used. The survey was conducted on a population of
size 4190. The data are reproduced in Table I. It is as-
sumed that the costs of measurement ch in various strata
for each unit are same and ch = 1 unit and the total cost
(excluding overhead cost c0) available for measurements,
C0 = 1000 units. If the estimated s2

jh are used as the true

TABLE I: Data for four strata and two characteristics
h Nh Wh s2

1h s2
2h

1 1419 0.3387 4817.72 130121.15
2 619 0.1477 6251.26 7613.52
3 1253 0.2990 3066.16 1456.40
4 899 0.2146 56207.25 66977.72

values of S2
jh, the weights ajh; j = 1, 2 and h = 1, 2, 3, 4

are worked out from (2) as:

ajh =




0.0357 0.9643
0.4509 0.5491
0.6780 0.3220
0.4563 0.5437




From (1) the weights to be assigned to the characteris-
tics are w1 = 0.6780 and w2 = 0.9643. The values of A2

h;
h = 1, 2, 3, 4 given by A2

h =
∑p

j=1 wjS
2
jh are obtained as

A2
1 = 128742.2391, A2

2 = 11580.0716, A2
3 = 3483.2630,

and A2
4 = 102695.1309.

The NLPP (5) for the given example could be ex-
pressed as:

Minimize Z(n1, n2, n3, n4) =
14769.0123

n1
+

252.6226
n2

+
311.4072

n3
+

4729.4353
n4

subject to n1 + n2 + n3 + n4 ≤ 1000
2 ≤ n1 ≤ 1419,

2 ≤ n2 ≤ 619,

2 ≤ n3 ≤ 1253,

2 ≤ n4 ≤ 899, (12)

To solve the NLPP (12) using the procedure discussed in Section 3 by dynamic programming technique we have
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Ck: k = 1, 2, 3, 4 and their limits defined earlier are:

C4 = n1 + n2 + n3 + n4 = 1000 ,

C3 = C4 − n4; 6 ≤ C3 ≤ 998 ,

C2 = C3 − n3; 4 ≤ C2 ≤ 996 ,

C1 = C2 − n2; 2 ≤ C1 ≤ 994 .

For the first-stage problem (k = 1)

f(C1) = min
2≤n1≤min(C

′
1 ,N1)

[
14769.0123

n1
+ f(C0)

]

= min
2≤n1≤min(

C1−0
1 ,1419)

[
14769.0123

n1

]
,

because f(C0) = 0

= min
2≤n1≤C1

[
14769.0123

n1

]

⇒ f(C1) =
14769.0123

C1
, at n∗1 = C1 (13)

For the second-stage problem (k = 2)

f(C2) = min
2≤n2≤min(C

′
2 ,N2)

[
252.6226

n2
+ f(C1)

]

= min
2≤n2≤min(

C2−2c1
c2

,N2)

[
252.6226

n2
+

14769.0123
C1

]

= min
2≤n2≤min(

C2−2
1 ,619)

[
252.6226

n2
+

14769.0123
C2 − n2

]

The optimal decision at this stage is obtained by using
classical method of optimization for minimizing the quan-
tity inside [ ] with respect to n2 satisfying the conditions
2 ≤ n2 ≤ min(C2−2

1 , 619) and 4 ≤ C2 ≤ 996. Therefore,

f(C2) =
18884.78713

C2
, at n∗2 = 0.1156591652C2 (14)

Similarly, for the third-stage of problem (k = 3),

f(C3) =
24046.29069

C3
, at n∗3 = 0.1137994802C3 (15)

satisfying 2 ≤ n3 ≤ min(C3−4
1 , 1253) and 6 ≤ C3 ≤ 998.

The optimal decision for the fourth and final-stage of
problem (k = 4) is

f(C4) = 50.1041461, at n∗4 = 307.232964762 (16)

Using this result, we obtain C3 = C4 − n4 = 1000 −
307.232964762 = 692.7670352381. Substituting this
value of C3 in (15), we have n∗3 = 78.836528509. Pro-
ceeding in this manner we obtain n∗2 = 71.006689909 and
n∗1 = 542.9238168207. Hence the optimum allocation
for the problem (12) rounding off to the nearest integer
value is n∗1 = 543, n∗2 = 71, n∗3 = 79 and n∗4 = 307 with
Z∗ = 50.1042.

TABLE II: The sum of the weighted variances under different
allocations (ignoring f.p.c.)

Allocations n1 n2 n3 n4 SWV (n)

Compromise
(i) minimizing trace 524 73 85 317 50.23
(ii) average 417 89 109 385 53.40
(iii) Chatterjee’s 427 86 113 374 52.93
(iv) proposed 542 71 79 307 50.10

Proportional 339 148 299 215 68.31

TABLE III: Variances of characteristics under different allo-
cations

Allocations V (y1
st) V (y2

st) Trace R.E. w.r.t.
proportional
allocation

Compromise
(i) minimizing trace 14.3 42.0 56.3 1.34
(ii) average 12.1 46.9 59.0 1.28
(iii) Chatterjee’s 12.2 46.3 58.5 1.29
(iv) proposed 14.8 41.5 56.3 1.34

Proportional 15.5 59.9 75.4 1.00

V. DISCUSSION

In the following section a comparison study of the com-
promise allocation discussed in this article to other avail-
able compromise allocations is made. The Table II sum-
marizes the results of various allocations. The compro-
mise allocations to be compared are:

1. Minimizing the trace of the variance-covariance ma-
trix (see Sukhatme et al., 1984).

2. Averaging the individual optimum allocation over
characteristics (see Cochran, 1977).

3. Minimizing the total relative increase in the vari-
ances (see Chatterjee, 1967).

4. Minimizing the sum of weighted variances (pro-
posed).

Note that in Table II SWV (n) denotes the sum of the
weighted variances of the estimated population means
given by the objective function of NLPP (5) obtained
for allocation n = (n1, n2, n3, n4) under different criteria
stated in first column of the table.

The variances of each characteristics (ignoring f.p.c)
under different allocations, the trace of the variance-
covariance matrix (or the total variance of the indepen-
dent characteristics) and the relative efficiencies (R.E.)
are given in Table III. The relative efficiencies of various
compromise allocations are obtained over compromise al-
location, which does not require the knowledge of Sjh.
Though the criteria (i) and (iv) are identical in terms of
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relative efficiency, the table reveals that the proposed cri-
terion gives least variance at least for the characteristic

that could produce high variance.
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