International Journal of Wildland Fire **2016**, 25, 466–477 http://dx.doi.org/10.1071/WF15047

A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion

Sarah V. Wyse^{A,B,G}, George L. W. Perry^{A,C}, Dean M. O'Connell^D, Phillip S. Holland^D, Monique J. Wright^D, Catherine L. Hosted^{D,E}, Samuel L. Whitelock^D, Ian J. Geary^{D,F}, Kévin J. L. Maurin^D and Timothy J. Curran^D

^ASchool of Environment, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand.

^BRoyal Botanic Gardens Kew, Wakehurst Place, RH17 6TN, UK.

^CSchool of Biological Sciences, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand.

^DEcology Department, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand.

^EWai-Ora Forest Landscapes Ltd, 48 Watsons Road, Harewood 8051, Christchurch, New Zealand.

^FDepartment of Geology, University of Otago, PO Box 56 Dunedin 9054, New Zealand.

^GCorresponding author. Email: S.Wyse@kew.org

Abstract. Fire is an important ecological disturbance in vegetated ecosystems across the globe, and also has considerable impacts on human infrastructure. Vegetation flammability is a key bottom-up control on fire regimes and on the nature of individual fires. Although New Zealand (NZ) historically had low fire frequencies, anthropogenic fires have considerably impacted indigenous vegetation as humans used fire extensively to clear forests. Few studies of vegetation flammability have been undertaken in NZ and only one has compared the flammability of indigenous plants; this was a qualitative assessment derived from expert opinion. We addressed this knowledge gap by measuring the flammability of terminal shoots from a range of trees and shrubs found in NZ. We quantified shoot flammability of 60 indigenous and exotic species, and compared our experimentally derived ranking with expert opinion. The most flammable species was the invasive exotic shrub Gorse (*Ulex europaeus*), followed by Manna Gum (*Eucalyptus viminalis*), Kūmarahou (*Pomaderris kumeraho*), Rimu (*Dacrydium cupressinum*) and Silver Beech (*Lophozonia menziesii*). Our experimentally derived ranking was strongly correlated with expert opinion, lending support to both methods. Our results are useful to ecologists seeking to understand how fires have and will influence NZ's ecosystems, and for fire managers identifying high-risk landscapes, and low flammability species for 'green firebreaks'.

Received 13 February 2015, accepted 8 December 2015, published online 25 February 2016

Introduction

As an ecological disturbance fire shapes community structure and ecosystem processes around the world (Bond 2005; Bowman *et al.* 2009). An ecosystem's fire regime emerges from interactions among climate, landscape and the characteristics of the available fuel (Whitlock *et al.* 2010). The flammability of the vegetation combusted in a fire is an important bottom-up control on the nature of individual fires and on the overall fire regime in an ecosystem or landscape (Bond and Midgley 1995; Fogarty 2001; Bond 2005). Additionally, the composition and arrangement of the vegetative fuel in a landscape can be altered by human activities, such as agricultural and forestry practices, the introductions of invasive plant species and the use of 'green firebreaks' (areas of vegetation comprised of low flammability

species and that may be irrigated, which act as barriers to help reduce fire spread: Johnson 1975; White and Zipperer 2010; Keeley *et al.* 2012). Planting decisions in both urban and rural areas, including the provision of green firebreaks, can be used to modify the vegetative fuel and hence landscape flammability, and so minimise fire risk in inhabited areas. Most authors broadly define flammability as the capacity of a material to ignite and sustain a fire, but the components measured to provide an assessment of flammability vary across authors and disciplines (e.g. Anderson 1970; Martin *et al.* 1994; Liodakis *et al.* 2002; Gill and Zylstra 2005; White and Zipperer 2010; Jaureguiberry *et al.* 2011; Madrigal *et al.* 2011; Pausas and Moreira 2012).

As a plant trait flammability consists of four main components, which are often strongly correlated: ignitability (how easily a plant ignites), combustibility (the speed or intensity at which a plant burns), sustainability (the length of time a plant continues to burn once ignited) and consumability (how much of a sample is burnt) (Anderson 1970; Martin et al. 1994). Measurements of plant flammability may quantify all or some of these components and have been undertaken using a variety of methodologies (e.g. Anderson 1970; Martin et al. 1994; Liodakis et al. 2002; Etlinger and Beall 2004; Gill and Zylstra 2005; Weise et al. 2005; White and Zipperer 2010; Jaureguiberry et al. 2011). Plant flammability is controlled by two main factors: tissue type or quality (including moisture content), and the structure and architecture of the plant (Perez-Harguindeguy et al. 2013). However, most measurements of flammability traits involve small plant components, typically leaves or needles, small twigs, or litter (e.g. Owens et al. 1998; Dimitrakopoulos and Papaioannou 2001; Kane et al. 2008; Cornwell et al. 2015). Such measurements accurately characterise the flammability of the chosen plant tissues and provide important information on surface fuels, but do not incorporate plant architecture, providing less ecologically meaningful results for canopy fuels than methods that use whole shoots or entire plants (Etlinger and Beall 2004; Jaureguiberry et al. 2011; Schwilk 2015). The most recent plant functional trait 'handbook' (Perez-Harguindeguy et al. 2013) advocates a shoot-level approach (following Jaureguiberry et al. 2011) as a standardised method of assessing plant flammability. This method preserves much of the architecture of the plant, particularly the fine fuels, and has recently been suggested as a suitable way to measure the flammability of samples from the plant canopy for a wide range of species, albeit with less precision than some laboratory-based approaches (Schwilk 2015).

New Zealand (NZ) has historically had low fire frequencies across its three main islands. Although charcoal has been found in sediment samples of all ages (Perry et al. 2014), fire recurrence times in NZ during the pre-human Holocene were in the order of centuries or even millennia (Ogden et al. 1998). Those fires that did occur were predominantly in tree-clad wetlands, forested ecosystems following (rare) volcanic eruptions and, to some extent, in drier areas of forest during the late Holocene (Perry et al. 2014). The infrequency and unpredictability of fire in time and space may explain the lack of specific fire adaptations in the NZ flora. The few NZ species (e.g. the serotinous Myrtaceous shrub Mānuka (Leptospermum scoparium)) that do possess obvious fire adaptations are relatively recent arrivals (Pliocene or later) that are closely related to eastern Australian species (McGlone et al. 2001). Despite the low fire frequencies in primeval NZ, the history of human colonisation shows that NZ forests were highly susceptible to fire. The first arrival of humans in NZ ~1280 AD (Wilmshurst et al. 2008) resulted in considerable changes in fire regimes. The initial burning period that followed Polynesian settlement caused rapid and extensive forest loss (likely >40%) and the transition from closed-canopy forests to early-successional Bracken (Pteridium esculentum), shrub and grassland communities (McWethy et al. 2009; McWethy et al. 2014; Perry et al. 2014). Further anthropogenic fire converted forest and secondary shrubland to pasture following European settlement ~1840 AD (McWethy et al. 2009; Perry et al. 2014).

Despite palaeoecological and historical evidence that the NZ flora burns readily, there is a lack of quantitative assessment of

the flammability of NZ plants. Studies based in other parts of the world have assessed the flammability of some species that occur in NZ. These include the invasive weeds Gorse (Ulex europaeus) (Núñez-Regueira et al. 1996; Madrigal et al. 2012) and Radiata Pine (Pinus radiata) (Fonda 2001), other exotic species (e.g. Manna Gum (Eucalyptus viminalis)) and some indigenous NZ species (Mānuka, Akeake (Dodonea viscosa) and Bracken) that occur elsewhere, such as Tasmania (Dickinson and Kirkpatrick 1985). In NZ, multiple studies have assessed the flammability of Gorse (Anderson and Anderson 2009, 2010), whereas the only published comparative assessment of indigenous trees and shrubs is qualitative and derived from expert opinion (Fogarty 2001). Forty two indigenous species were ranked by Fogarty (2001) in terms of their average flammability score based on a survey of fire managers. In that survey, experts were asked to assign species to flammability categories based on their observations of the species during and after prescribed burns and wildfires under different fire danger conditions. The majority of species (28/42; 66.7%) were assigned to low or moderately low flammability categories, with only six species considered to be moderately high or high flammability (Fogarty 2001). While that study represented an important and useful first attempt at ranking the flammability of NZ species, and has been used to provide planting guidelines for green firebreaks, Fogarty (2001) recognised that his rankings lacked empirical testing. This testing has not been undertaken until now. It is imperative to quantify the flammability of NZ species and empirically test Fogarty's (2001) widely used ranking because climate change scenarios suggest increasing summer water deficits for much of NZ (Mullan et al. 2005), with conditions potentially conducive to higher fire risk (Pearce et al. 2010). Additionally, examination of the flammability of a flora that has evolved in the absence of frequent and significant fires makes a useful addition to the fire ecology literature, which is dominated by studies from fireprone environments.

In this study we measured the shoot-level flammability of 60 plant species that occur in a range of forest and scrub habitats in NZ. We aimed to: 1) quantify the shoot-level flammability of a range of indigenous and common exotic species in NZ and 2) compare experimentally derived rankings using the whole-shoot flammability method (Jaureguiberry *et al.* 2011; Perez-Harguindeguy *et al.* 2013) with those determined from expert opinion (Fogarty 2001). This second aim represents a novel contribution to the literature; such qualitative flammability data have not previously been tested against quantitative rankings.

Methods

Sample collection

We collected samples from 50 NZ indigenous and 10 exotic plant species, across 37 families (Table 1). The indigenous species encompassed three monocotyledons (one liana, one iridoform perennial herb and one arborescent monocot), four ferns (including three tree ferns), five gymnosperm trees, one dicotyledonous liana, and 37 dicotyledonous trees and shrubs. The species chosen occur across a broad range of habitats in both the North and South Islands of NZ (see Fig. S2 in the Supplementary material, available online only, for collection locations). The

Cardio fraction Advance Anomylohennes ner Control (Correction Structure) Cononononois (Correction Structure) Cont	Species	Species code	Family	Structural type	$MC \pm s.e.m.$	Origin	и
ALEste Signidicate Discryledions tree 23:44.3% ARIser Elaecumpacue Discryledions tree 23:47.7% BEltaw Lauraceac Discryledions tree 23:47.7% BELtaw Lauraceac Discryledions tree 23:47.7% COPub Rubiaceac Discryledions tree 23:47.7% CORud Agophyllaceac Discryledions tree 23:47.7% CORud Agophyllaceac Discryledions tree 23:41.3% CORud Agophyllaceac Discryledions struct 23:41.3% CAtamed Coprincipate Discryledions struct 23:41.3% CAtamed Coprincipate Discryledions struct 23:41.3% Discryledions struct Coprincipate Discryledions struct 23:41.3% Discryledions struct Discryledions struct Discryledions struct	Kauri (Agathis australis (D.Don) Lindl. ex Loudon)	AGAaus	Araucariaceae	Gymnosperm tree	$103\pm6.9\%$	Indigenous	∞
Alklart Elaecompacente Dicoryledenous tree Dicor	Titoki (Alectryon excelsus Gaertn.)	ALEexc	Sapindaceae	Dicotyledenous tree	$23\pm4.8\%$	Indigenous	8
BELlar Lanracete Dicryledenous tree 79+15,1% COProb Rubinetee Dicryledenous tree 53+77% COProb Rubinetee Dicryledenous tree 53+47% COProb Rubinetee Dicryledenous tree 79±15,1% COProb Rubinetee Dicryledenous tree 79±15,1% CORad Asynthetee Dicryledenous tree 79±13,5% CORad Asynthetee Dicryledenous tree 79±13,5% CORad Corprocentee Opensyledenous tree 79±13,5% CORad Corprocentee Opensyledenous tree 79±13,5% CVAtad Cynthesceac Tree fem 239±14,3% CVAtad Cynthesceac Dicryledenous shuth 23±13,6% DiCopi Expense Dicryledenous shuth 23±13,6% DiCrop	Makomako (Aristolelia serrata (J.R.Forst. and G.Forst.) W.R.B.Oliv.)	ARIser	Elaeocarpaceae	Dicotyledenous tree	$121\pm19.8\%$	Indigenous	٢
BEllaw Lannacee Discryledenous tree 53 ± 7.7% CALrig Nyrtaceae Discryledenous tree 22 ± 5.7% CORrob Rubinecae Discryledenous tree 22 ± 5.7% CORrob Rubinecae Discryledenous tree 23 ± 4.3% CORrad Argonylatecae Discryledenous tree 23 ± 4.3% CORrad Argonylatecae Discryledenous tree 23 ± 4.3% CORrad Corpineeripaceae Discryledenous tree 23 ± 4.3% CORrad Corpineeripaceae Discryledenous tree 03 ± 4.1% CORRA Corpineeripaceae Discryledenous tree 03 ± 4.1% Discryledenous tree Corpineeripaceae Discryledenous tree 03 ± 4.1% Discryledenous tree Discryledenous tree 03 ± 4.1% 03 ± 4.1% Discryledenous tree Discryledenous tree 05 ± 4.1% 05 ± 4.1% Discryledenous tree Discryledenous tree 03 ± 4.1% 03 ± 4.1% Discryledenous tree Discryledenous tree 05 ± 4.2% 05 ± 4.2% Discryledenous tree Discryleden	Taraire (Beilschmiedia tarairi (A.Cunn.) Benth. And Hook.f. ex Kirk)	BEItar	Lauraceae	Dicotyledenous tree	$79\pm15.1\%$	Indigenous	8
CALIE Myntacete Dicovjedenous tree 22:45.7% COPath Rubiacete Dicovjedenous tree 73:41.3% CORtad Aspartgacete Aspartgacete Aspartgacete 73:41.3% CORtad Aspartgacete Dicovjedenous tree 73:41.3% CORtad Aspartgacete Dicovjedenous tree 73:41.3% CORtad Aspartgacete Dicovjedenous shuth 15:41.2% CUPmac Cupressocate Dicovjedenous shuth 15:41.2% CVAdet Cythetecte Dicovjedenous shuth 15:41.2% CVAted Cythetecte Dicovjedenous shuth 23:41.4% DiCoup Polocarpacete Dicovjedenous shuth 23:41.4% DiCoup Dolarate Dicovjedenous shuth 23:41.4% DiCoup Dicovjedenous shuth 23:41.4% 23:41.4% DiCoup Dicovjedenous shuth 23:41.4% 23:41.4% DiCoup Dicovjedenous shuth 23:41.4% 24:41.5% Dicovjedenous shuth Dicovjedenous shuth 23:41.4% 24:41.5%	Tawa (Beilschmiedia tawa (A.Cunn.) Benth. and Hook.f. ex Kirk)	BEItaw	Lauraceae	Dicotyledenous tree	$53 \pm 7.7\%$	Indigenous	8
COPublic Rubiaceae Discryfedenous tree 33:44,3% CORlad Argophyllaceae Discryfedenous tree 73:41,3% CUPada Cyntmosprant tree 79:10,5% 73:41,3% CUPada Cyntmosprant tree 79:10,5% 73:41,3% CUPada Cynthesceae Tree fran 22:34,17% DiSou Cynthesceae Tree fran 22:44,7% DiSou Rammesea Tree fran 22:44,7% DiSou Ramineseae Tree fran 22:44,7% DiSou Diotyledenous tree 73:41,7% 74:41,3% DiSou Diotyledenous tree 73:41,7% 74:41,3% DiSou Diotyledenous tree 10:44,7% 74:47% Disou Diotyledenous tree 10:44,7% 74:47% Disou Diototototototototototototototototototot	Bottlebrush (Callistemon rigidus R.Br.)	CALrig	Myrtaceae	Dicotyledenous tree	$22 \pm 5.7\%$	Exotic	×
COProb Rubiaceae Dicoryledenous tree 74+11.3% CORate Convocarpaceae Dicoryledenous tree 74+11.3% CORate Convocarpaceae Dicoryledenous tree 73+11.2% CUPmac Convocarpaceae Dicoryledenous tree 15+11.2% CVAmed Cyatheaceae Dicoryledenous tree 15+11.2% CYAmed Cyatheaceae Tree ferm 25+41.3% CYAmed Cyatheaceae Dicoryledenous shrub 15+11.2% DACcup Podocapaceae Gymmospem tree 15+11.2% DACcup Podocapaceae Gymmospem tree 15+11.2% DACcup Podocapaceae Gymospem tree 15+11.2% DACcup Podocapaceae Dicoryledenous shrub 55+11.3% DACcup Podocapaceae Dicoryledenous strub 55+11.3% DACcup Meliaceae Dicoryledenous strub 55+11.5% DACcup Meliaceae Dicoryledenous tree 55+13.5% DIStou Meliaceae Dicoryledenous tree 55+13.5% DIStou	Māmāngi (<i>Coprosma arborea</i> Kirk)	COParb	Rubiaceae	Dicotyledenous tree	$38\pm4.3\%$	Indigenous	×
CORbat Aspangaceae Arborescent monocot 79+10.5% CORbat Argophyllaceae Dicoyledenous strub 79+10.5% CORbat Argophyllaceae Dicoyledenous strub 239±1.3% CVAmed Cyathaceae Tree ferm 239±1.3% CVAmed Cyathaceae Tree ferm 239±1.4% CVAmed Cyathaceae Tree ferm 239±1.4% CVAmed Cyathaceae Tree ferm 224±1.7% DiStou Rharmaceae Dicoyledenous strub 52±1.2% DiStou Rharmaceae Dicoyledenous strub 52±1.4% DiStou Rharmaceae Dicoyledenous strub 52±1.4% DiStou Rharmaceae Dicoyledenous strub 52±1.4% DiStou Nothofgaceae Dicoyledenous strub 52±4.2% DiStou Distoyledenous strub 52±4.2% DiStou Distoyledenous strub 52±4.2% DiStou Distoyledenous strub 52±4.2% Distopleatea Distopleateans strub 52±4.2% DiStou	Karamū (<i>Coprosma robusta</i> Raoul)	COProb	Rubiaceae	Dicotyledenous tree	$74\pm13.8\%$	Indigenous	×
CORbid Argophyllacete Dicoyledenous shub I5+4.2% CORlac Corynocarpaceate Dicoyledenous tree 135+4.2% CVAdea Cyatheaceate Tree ferm 239 ±1.4.3% CVAdea Cyatheaceate Dicoyledenous tree 135 ±1.2% CVAdea Cyatheaceate Tree ferm 22 ±4.7% DACcup Podocarpaceate Gyamosperm tree 135 ±1.2% DIStou Rhammecate Dicoyledenous struth 25 ±4.7% DACcup Podocarpaceate Gyamosperm tree 15 ±1.2% DIStou Rhammecate Dicoyledenous struth 5 ±1.4% DACcup Molarceate Dicoyledenous struth 5 ±1.4% DIStou Mhamaceate Dicoyledenous struttee 5 ±1.4% DIStou Mhamaceate Dicoyledenous tree 5 ±1.4% RUCex	Cabbage tree (Cordyline australis (G.Forst.) Endl.)	CORaus	Asparagaceae	Arborescent monocot	$79\pm10.5\%$	Indigenous	×
CORlae Corynosarpaceae Dicorylectrons tree 239±14.3% CUPmac Cupressaceae Gymmosperm tree 15±1.2% CVAded Cyatheaceae Gymmosperm tree 15±1.2% CVAdea Cyatheaceae Gymmosperm tree 15±1.2% CVAdea Cyatheaceae Gymmosperm tree 15±1.2% CVAdea Cyatheaceae Gymmosperm tree 15±1.2% DiCqu Dickoniaceae Gymmosperm tree 15±1.2% DiCsu Riamaceae Gymmosperm tree 15±1.2% DiCsu Riamaceae Dicorylectenous shrub 63±10.0% DiSpe McMaceae Dicorylectenous shrub 63±1.4% DiCoria Mainaceae Dicorylectenous struch 23±3.2% DiCoria Myraceae Dicorylectenous struch 15±2.2% DiCoria Myraceae Dicorylectenous struch 15±2.2% DiCorylectonos struch Dicorylectenos struch 15±2.2% DiCorylectonos struch Dicorylectenos struch 15±2.2% Rilit Criscliniaceae Dico	Korokio (Corokia buddleioides A. Cunn.)	CORbud	Argophyllaceae	Dicotyledenous shrub	$15\pm4.2\%$	Indigenous	×
CUPmac Cupresserate Gymnosperm tree 103±3.3% CYAmed Cyntheaceae Tree ferm 22±4.7% CYAmed Cyntheaceae Tree ferm 22±4.7% CYAmed Cyntheaceae Dicotyledenous shrub 23±4.1% DACup Poloicoarpaceae Gymnosperm tree 53±10.0% DISiou Rharmaceae Dicotyledenous shrub 23±4.7% DISiou Rharmaceae Dicotyledenous tree 33±4.7% DISiou Rharmaceae Dicotyledenous tree 33±4.7% DISiou Myrtaceae Dicotyledenous tree 33±4.7% DISiou Myrtaceae Dicotyledenous tree 33±3.4% FUCxin Myrtaceae Dicotyledenous tree 33±3.4% FUShis Nothofingaceae Dicotyledenous tree 33±3.4% FUShis Nothofingaceae Dicotyledenous tree 33±3.4% FUShis Nothofingaceae Dicotyledenous tree 33±3.4% RNNer Proteacea Dicotyledenous tree 33±3.4% RNNer Nothofingacea	Karaka (Corynocarpus laevigatus J.R.Forst. and G.Forst.)	CORlae	Corynocarpaceae	Dicotyledenous tree	$239\pm14.3\%$	Indigenous	×
CYAtea Cyatheaceae Tree fem 13±12% CYAmed Cyatheaceae Tree fem 13±12% CYAmed Cyatheaceae Tree fem 21±47% CYAmed Cyatheaceae Tree fem 21±47% DACcup Podocarpaceae Gymnosperm tree 03±100% DNS Bhatenee Dicolyledenous shrub 45±13.6% DNAace Ericese Dicolyledenous tree 22±4.7% DNS Sapindaceae Dicolyledenous tree 23±4.0% DNAace Ericese Dicolyledenous tree 23±4.1% DNAace Ericese Dicolyledenous tree 23±4.1% DNAace Ericese Dicolyledenous tree 23±4.1% EUCsin Myrtaceae Dicolyledenous tree 23±4.1% FUScli Nothofigaceae Dicolyledenous tree 23±4.1% FUScli Nothofigaceae Dicolyledenous tree 23±4.1% FUScli Nothofigaceae Dicolyledenous tree 39±3.3% FUScli Nothofigaceae Dicolyledenous tree	Macrocarpa (Cupressus macrocarpa Hartw. Ex Gordon)	CUPmac	Cupressaceae	Gymnosperm tree	$103\pm3.3\%$	Exotic	11
CYAmed Cyatheaceae Tree fem 22±4.7% DACeup Podocampaceae Dicotyledenous shruth 23±4.7% DACeup Podocampaceae Cymnosperm tree 03±10.0% DIStou Rhammaccae Dicotyledenous shruth 23±3.7% DIStou Rhammaccae Dicotyledenous shruth 23±4.7% DIStou Rhammaccae Dicotyledenous shruth 23±4.7% DOVis Sapindaceae Dicotyledenous tree 03±10.0% DIStou Rhamaccae Dicotyledenous tree 23±4.7% DISto Dicotyledenous tree Dicotyledenous tree 23±4.7% DIStoi Nuthofagreeae Dicotyledenous tree 03±1.0% FUStis Nuthofagreeae Dicotyledenous tree 03±4.5% FUStis Nuthofagreeae Dicotyledenous tree 03±3.4% FUStis Nuthofagreeae Dicotyledenous tree 03±3.4% FUStis Nuthofagreeae Dicotyledenous tree 03±4.5% GRUIf Cristereae Dicotyledenous tree 03±4.2% FUStis Nuthofagreeae Dicotyledenous tree 03±4.2% GRUIf Cristereae Dicotyledenous tree 03±4.2% MiNet MiNet Nutreeae Dicotyledenous tree <td>Ponga (<i>Cyathea dealbata</i> (G.Forst.) Sw.)</td> <td>CYAdea</td> <td>Cyatheaceae</td> <td>Tree fern</td> <td>$15\pm1.2\%$</td> <td>Indigenous</td> <td>×</td>	Ponga (<i>Cyathea dealbata</i> (G.Forst.) Sw.)	CYAdea	Cyatheaceae	Tree fern	$15\pm1.2\%$	Indigenous	×
CYTsco Fabaceae Dicopledenous shutb DACeup Podocarpaceae Oymospern tree 63±100% DISoa Rhammaceae Tree ferm 22±3.7% DISoa Rhammaceae Tree ferm 25±13.6% DISoa Rhammaceae Tree ferm 25±13.6% DISoa Rhammaceae Dicopledenous shutb 45±13.6% DISoa Rhammaceae Dicopledenous tree 22±3.7% DISoa Rhammaceae Dicopledenous tree 22±4.7% FUCxx Onagraceae Dicopledenous tree 123±22.9% FUCxx Onagraceae Dicopledenous tree 124±8.5% FUSci Nothofgagecae Dicopledenous shutb 153±2.19% GENiti Cristeliniaceae Dicopledenous shutb 134±8.5% GRNiti Cristeliniaceae Dicopledenous shutb 133±2.40% GRNiti Cristeliniaceae Dicopledenous tree 134±8.5% GRNiti Cristeliniaceae Dicopledenous tree 134±8.5% GRNiti Cristeliniaceae Dicoplede	Mamaku (Cyathea medullaris (G.Forst.) Sw.)	CYAmed	Cyatheaceae	Tree fern	$22 \pm 4.7\%$	Indigenous	×
DACeup Podocarpaceae Gymnosperm tree 63 ± 100% DICsqu Dicksoniaceae Tree fer 63 ± 100% DIS Dicksoniaceae Dicoyledenous shrub 65 ± 14.5% DIS DODvis Sapindaceae Dicoyledenous shrub 65 ± 14.5% DOS Sapindaceae Dicoyledenous tree 65 ± 14.5% DIS EUCvim Matace Dicoyledenous tree 85 ± 9.0% DIS FUScli Nothofigaceae Dicoyledenous tree 85 ± 9.0% FUScli Nothofigaceae Dicoyledenous tree 134 ± 8.5% FUStis Nothofigaceae Dicoyledenous tree 134 ± 8.5% GENIg Loganaceae Dicoyledenous tree 134 ± 8.5% GENig Criseliniaceae Dicoyledenous tree 134 ± 8.5% GENig Criseliniaceae Dicoyledenous tree <td>Scotch Broom (Cytisus scoparius (L.) Link)</td> <td>CYT_{sco}</td> <td>Fabaceae</td> <td>Dicotyledenous shrub</td> <td></td> <td>Exotic</td> <td>×</td>	Scotch Broom (Cytisus scoparius (L.) Link)	CYT _{sco}	Fabaceae	Dicotyledenous shrub		Exotic	×
DICsqu Dicksoniaceae Tree fem 22±3.7% DISou Rhammaceae Dicoyledenous shrub 55±13.6% DISou Rhammaceae Dicoyledenous shrub 65±14.5% DISou Rhammaceae Dicoyledenous shrub 65±14.5% DISou Rhamaceae Dicoyledenous tree 85±4.7% DISou Myrtaceae Dicoyledenous tree 152±22.9% DIStis Nothofigaceae Dicoyledenous tree 154±8.5% FUStis Nothofigaceae Dicoyledenous tree 134±8.5% RUCKin Myrtaceae Dicoyledenous tree 139±24.0% GENIg Loganiaceae Dicoyledenous tree 139±24.0% GINIF Griseliniaceae Dicoyledenous tree 139±24.0% GINIF Griseliniaceae Dicoyledenous tree 139±24.0% GINIF Griseliniaceae Dicoyledenous tree 139±24.0% KNIesc Proteaceae Dicoyledenous tree 139±24.0% KNIesc Proteaceae Dicoyledenous tree 139±24.0% KNIesc	Rimu (<i>Dacrydium cupressinum</i> Lamb.)	DACcup	Podocarpaceae	Gymnosperm tree	$63\pm10.0\%$	Indigenous	×
DIStouRhamnaceaeDicotyledenous shrub45 ± 13.6%DODvisSapindaceaeDicotyledenous tree85 ± 9.0%DXSppMeliaceaeDicotyledenous tree152 ± 22.9%DYSsppMeliaceaeDicotyledenous tree152 ± 47%EUCvimMyrtaceaeDicotyledenous tree153 ± 3.5%EUCvimMyrtaceaeDicotyledenous tree154 ± 8.5%EUCvimMyrtaceaeDicotyledenous tree154 ± 8.5%FUCexcOnagraceaeDicotyledenous tree154 ± 8.5%FUShisNothofagaceaeDicotyledenous tree154 ± 1.5%FUShisNothofagaceaeDicotyledenous tree154 ± 1.5%FUShisMyraceaeDicotyledenous tree154 ± 1.5%FUShisNothofagaceaeDicotyledenous tree134 ± 1.5%FUCexcMyraceaeDicotyledenous tree137 ± 5.4%MyraceaeDicotyledenous tree100 ± 1.0%MyraceaeDicotyledenous tree137 ± 5.4%MyraceaeDicotyledenous tree137 ±	Whekī (Dicksonia squarrosa (G.Forst.) Sw.)	DICsqu	Dicksoniaceae	Tree fern	$22 \pm 3.7\%$	Indigenous	×
DODvis Sapindaceae Dicotyledenous tree 85 ± 9,0% DRAace Ericaceae Dicotyledenous tree 85 ± 9,0% DRAace Ericaceae Dicotyledenous tree 85 ± 9,0% DRSpe Meliaceae Dicotyledenous tree 85 ± 9,0% EUCvin Myrtaceae Dicotyledenous tree 82 ± 4,7% FUCsic Onagraceae Dicotyledenous tree 82 ± 4,7% FUSits Nothofsgaceae Dicotyledenous tree 82 ± 4,7% GRNig Logenee Dicotyledenous tree 134 ± 8,5% GRNig Logenee Dicotyledenous tree 132 ± 3,5% GRNit Griseliniaceae Dicotyledenous tree 190 ± 7,0% GRNit Griseliniaceae Dicotyledenous tree 190 ± 7,0% GRNit Griseliniaceae Dicotyledenous tree 190 ± 7,0% GRNite Myrtaceae Dicotyledenous tree 191 ± 1,5% KUNeir Myrtaceae Dicotyledenous tree 135 ± 27,9% Mirecae Dicotyledenous tree Dicotyledenous tree 137 ± 5,8%	Matagouri (Discaria toumatou Raoul)	DIStou	Rhamnaceae	Dicotyledenous shrub	$45\pm13.6\%$	Indigenous	6
DRAace Ericaceae Dicotyledenous shrub 62±14.5% DYSpe Meliaceae Dicotyledenous tree 123±2.29% EUCvim Myrtaceae Dicotyledenous tree 123±2.29% FUScli Nothofagaceae Dicotyledenous tree 134±8.5% GENlig Loganiaceae Dicotyledenous tree 139±2.40% GRUIt Cristeliniaceae Dicotyledenous tree 139±2.40% KNberi Myrtaceae Dicotyledenous tree 139±2.40% KUNeri Myrtaceae Dicotyledenous tree 199±1.5% No <ldmen< td=""> Nothofagaceae Dicotyledenous tree 131±5.5% METRIA Violaceae Dicotyledenous tree 131±5.5% NMETam Violaceae Dicotyledenous tree 131±5.5% METRIA Niolaceae Dicotyledenous tree <t< td=""><td>Akeake (Dodonaea viscosa Jacq.)</td><td>DODvis</td><td>Sapindaceae</td><td>Dicotyledenous tree</td><td>$85\pm9.0\%$</td><td>Indigenous</td><td>6</td></t<></ldmen<>	Akeake (Dodonaea viscosa Jacq.)	DODvis	Sapindaceae	Dicotyledenous tree	$85\pm9.0\%$	Indigenous	6
DYSpe Meliaceae Dicotyledenous tree 152±2.29% EUCvim Myrtaceae Dicotyledenous tree 152±2.29% FUCexc Onagraceae Dicotyledenous tree 13±8.5% FUSfus Nothofagaceae Dicotyledenous tree 13±8.5% FUSfus Nothofagaceae Dicotyledenous tree 13±4.7% FUSfus Nothofagaceae Dicotyledenous tree 13±8.5% FUSfus Nothofagaceae Dicotyledenous tree 13±8.5% GENlig Loganiaceae Dicotyledenous tree 13±8.5% GRUIt Grissliniaceae Dicotyledenous tree 13±8.5% KNiveri Proteaceae Dicotyledenous tree 159±2.40% KUNeri Myrtaceae Dicotyledenous tree 05±8.9% KUNeri Myrtaceae Dicotyledenous tree 19±1.5% Dicotyledenous tree Dicotyledenous tree 19±1.5% METam Violaceae Dicotyledenous tree 19±1.5% METam Nothofagaceae Dicotyledenous tree 19±1.5% METam Violaceae Dicotyledenous tree 19±1.5% METam Violaceae Dicotyledenous tree 19±1.5% METam Violaceae Dicotyledenous tree 19±1.5%	Dracophyllum acerosum Berggr.	DRAace	Ericaceae	Dicotyledenous shrub	$62\pm14.5\%$	Indigenous	×
EUCvim Myrtaceac Dicotyledenous tree 82 ±4.7% FUGexc Onagraceac Dicotyledenous tree 82 ±4.7% FUGexc Onagraceac Dicotyledenous tree 134 ±8.5% FUShis Nothoftgaceae Dicotyledenous shutb 159 ±3.8% FUShis Nothoftgaceae Dicotyledenous shutb 159 ±24.0% GRIlit Griseliniaceae Dicotyledenous shutb 159 ±24.0% GRIlit Griseliniaceae Dicotyledenous shutb 190 ±7.0% RNNexc Proteaceae Dicotyledenous tree 190 ±7.0% KNIexc Proteaceae Dicotyledenous shutb 190 ±7.0% MEL Myrtaceae Dicotyledenous shutb 190 ±7.0% Nohoftagaceae Dicotyledenous shutb 190 ±7.0% MEL Myrtaceae Dicotyledenous shutb 190 ±7.0% MEL Myrtaceae Dicotyledenous shutb 191 ±1.5% MELram Violaceae Dicotyledenous shutb 194 ±5% MET Myrtaceae Dicotyledenous shutb 194 ±6.8% MFT Myrtaceae Dicotyledenous shutb 194 ±6.8% MELram Violaceae Dicotyledenous shutb 194 ±1.5% MFT Myrtaceae Dicotyledenous shutb 137 ±5.8%	Kohekohe (Dysoxylum spectabile (G.Forst) Hook.f.)	DYSspe	Meliaceae	Dicotyledenous tree	$152\pm22.9\%$	Indigenous	×
FUCexcOnagraceaeDicotyledenous tree134±8.5%funssen)FUScliNothofagaceaeDicotyledenous tree39±3.8%fUSfinsNothofagaceaeDicotyledenous tree39±3.8%fUSfinsNothofagaceaeDicotyledenous tree39±3.8%fUStinsNothofagaceaeDicotyledenous tree39±3.8%fSNLexcProteaceaeDicotyledenous tree190±7.0%fKNlexcProteaceaeDicotyledenous tree190±7.0%KNlexcProteaceaeDicotyledenous tree190±7.0%fKNlexMyrtaceaeDicotyledenous tree191±7%fNneiMyrtaceaeDicotyledenous tree191±1.5%fNneiMyrtaceaeDicotyledenous tree19±1.5%fNneiMyrtaceaeDicotyledenous tree19±4.2%fNrMyrtaceaeDicotyledenous tree135±27.9%fNrMyrtaceaeDicotyledenous tree135±1.5%fNrMyrtaceae	Manna Gum (Eucalyptus viminalis Labill.)	EUCvim	Myrtaceae	Dicotyledenous tree	$82 \pm 4.7\%$	Exotic	24
FUScliNothofagaceaeDicotyledenous tree39 ± 3.8%FUSfusNothofagaceaeDicotyledenous tree55 ± 6.7%GRIlitGriseliniaceaeDicotyledenous tree159 ± 24.0%GRIlitGriseliniaceaeDicotyledenous tree159 ± 3.3%GRIlitGriseliniaceaeDicotyledenous tree52 ± 6.7%KNIexeProtaceaeeDicotyledenous tree190 ± 7.0%KNIexeProtaceaeeDicotyledenous tree190 ± 7.0%KNIexeMyrtaceaeDicotyledenous tree191 ± 1.5%LEPscoMyrtaceaeDicotyledenous tree19 ± 1.5%NothofagaceaeDicotyledenous tree19 ± 1.5%NameNothofagaceaeDicotyledenous tree19 ± 1.5%NameNothofagaceaeDicotyledenous tree13 ± 2.1%NameNothofagaceaeDicotyledenous tree13 ± 2.1%NameMiETfulMyrtaceaeDicotyledenous tree13 ± 2.5%MSTfulMyrtaceaeDicotyledenous tree13 ± 4.2%MYRausPrimulaceaeDicotyledenous tree13 ± 5.8%NYRausPrimulaceaeDicotyledenous tree13 ± 5.8%NYRausPrimulaceaeDicot	Kotukutuku (Fuchsia excorticata (J.R.Forst. and G.Forst.) L.f.)	FUCexc	Onagraceae	Dicotyledenous tree	$134\pm 8.5\%$	Indigenous	×
FUSfusNothofagaceaeDicotyledenous tree $65\pm6.7\%$ GENligLoganiaceaeDicotyledenous shrub $159\pm24.0\%$ GRI1itGriseliniaceaeDicotyledenous tree $190\pm7.0\%$ GRUNerProteaceaeDicotyledenous tree $190\pm7.0\%$ KUNerMyrtaceaeDicotyledenous tree $02\pm9.6\%$ KUNerMyrtaceaeDicotyledenous tree $02\pm9.6\%$ LEUfasEricaceaeDicotyledenous tree $02\pm9.6\%$ LEUfasEricaceaeDicotyledenous tree $02\pm9.6\%$ LEUfasEricaceaeDicotyledenous tree $13\pm1.5\%$ MELramViolaceaeDicotyledenous tree $13\pm2.1\%$ METridMyrtaceaeDicotyledenous tree $13\pm2.1\%$ METramViolaceaeDicotyledenous tree $94\pm6.8\%$ METramOtherNytraceaeDicotyledenous treeMATaaPrimulaceaeDicotyledenous tree $94\pm6.8\%$ MYraiPrimulaceaeDicotyledenous tree $94\pm6.8\%$ MYraPrimulaceaeDicotyledenous tree $94\pm6.8\%$ OLEfurAsteraceaeDicotyledenous tree $97\pm9.1\%$ PhOtenAsteraceaeDicotyledenous tree $94\pm6.8\%$ PhOtenOLEfurAsteraceaeDicotyledenous tree<	Mountain Beech (Fuscospora cliffortoides (Hook.f.) Heenan and Smissen)	FUScli	Nothofagaceae	Dicotyledenous tree	$39\pm3.8\%$	Indigenous	×
GENlig Loganiaceae Dicotyledenous shrub 159±24.0% GRIlit Griseliniaceae Dicotyledenous tree 190±7.0% HAKser Proteaceae Dicotyledenous tree 190±7.0% KNlexc Proteaceae Dicotyledenous tree 60±9.6% KUNeri Myrtaceae Dicotyledenous tree 60±9.6% LEPsco Myrtaceae Dicotyledenous tree 60±9.6% LEUran Violaceae Dicotyledenous tree 19±1.5% METran Violaceae Dicotyledenous tree 13±2.1% MYOlae Scrophulariaceae Dicotyledenous tree 13±4.2% MYOlae Scrophulariaceae Dicotyledenous tree 137±5.8% MYRaus Pirmulaceae Dicotyledenous tree 137±5.8% MYRaus Pirmulaceae Dicotyledenous tree 137±5.8% MYRaus Pirmulaceae Dicotyledenous tree 137±6.8% <td>Red Beech (Fuscospora fusca (Hook.f.) Heenan and Smissen)</td> <td>FUSfus</td> <td>Nothofagaceae</td> <td>Dicotyledenous tree</td> <td>$65\pm6.7\%$</td> <td>Indigenous</td> <td>×</td>	Red Beech (Fuscospora fusca (Hook.f.) Heenan and Smissen)	FUSfus	Nothofagaceae	Dicotyledenous tree	$65\pm6.7\%$	Indigenous	×
GRIIt Griseliniaceae Dicotyledenous tree 190±7.0% HAKser Proteaceae Dicotyledenous shrub 38±3.3% KNlexc Proteaceae Dicotyledenous tree 62±8.9% KUNeri Myrtaceae Dicotyledenous tree 60±9.6% LED'sco Myrtaceae Dicotyledenous tree 60±9.6% LEUfas Ericaceae Dicotyledenous tree 19±1.5% Di LOPmen Nothofagaceae Dicotyledenous tree 13±2.1% METam Violaceae Dicotyledenous tree 135±2.1% METram Violaceae Dicotyledenous tree 135±2.1% METin Myrtaceae Dicotyledenous tree 135±2.1% MSTRaus Picotyledenous tree 135±2.1% MSTRaus Picotyledenous tree 135±2.1% MYRaus Picotyledenous tree 137±5.8% MYRaus Picotyledenous tree 137±5.8% MYRaus Oleaceae Dicotyledenous tree 137±5.8% MYRaus Primulaceae Dicotyledenous tree 13±8.1% Notocae Dicotyledenous tree 100±4.2% Notocaee Dicotyledenous tree 103±4.6% NTOIae Struhorthocaee Dicotyledenous tree NTata	Hangehange (Geniostoma ligustrifolium A.Cunn.)	GENlig	Loganiaceae	Dicotyledenous shrub	$159\pm24.0\%$	Indigenous	×
HAKserProteaceaeDicotyledenous shrub38 ± 3.3%KNlexcProteaceaeDicotyledenous tree38 ± 3.3%KUNeriMyrtaceaeDicotyledenous tree62 ± 8.9%KUNeriMyrtaceaeDicotyledenous tree60 ± 9.6%LEUfasEricaceaeDicotyledenous tree19 ± 1.5%LEUfasEricaceaeDicotyledenous tree13 ± 2.1%MELramViolaceaeDicotyledenous tree13 ± 2.1%METexcMyrtaceaeDicotyledenous tree13 ± 2.1%METfulMyrtaceaeDicotyledenous tree13 ± 2.1%METfulMyrtaceaeDicotyledenous tree13 ± 2.1%MSTanDicotyledenous tree13 ± 2.1%MYOlaeScrophulariaceaeDicotyledenous treeMYRausPrimulaceaeDicotyledenous tree13 ± 2.1%MYRausOleaceaeDicotyledenous tree13 ± 5.8%MYRausOleaceaeDicotyledenous tree13 ± 5.8%NYRausOleaceaeDicotyledenous tree52 ± 8.5%NYRausOleaceaeDicotyledenous tree84 ± 6.8%NFranOleaceaeDicotyledenous tree86 ± 7.9%PHOtenXanthorrhoeaceaeMonocotyledenous shrub86 ± 7.9%PHYtriPhyluciPhyluceaeGymnosperm treePhyladPinaceaeGymnosperm tree100 ± 9.5%PhradPinaceaeDicotyledenous tree100 ± 9.5%PhylacPinaceaeDicotyledenous tree100 ± 9.5%PhylacPinaceaeDicoty	Broadleaf (Griselinia littoralis Raoul)	GRIlit	Griseliniaceae	Dicotyledenous tree	$190\pm7.0\%$	Indigenous	16
KNIexcProteaceaeDicotyledenous tree62±89%KUNeriMyrtaccaeDicotyledenous tree60±9.6%LEPscoMyrtaccaeDicotyledenous tree60±9.6%LEUfasEricaccaeDicotyledenous tree19±1.5%LEUfasEricaccaeDicotyledenous tree13±2.1%MELramViolaccaeDicotyledenous tree13±2.1%METexcMyrtaccaeDicotyledenous tree135±27.9%METfulMyrtaccaeDicotyledenous tree135±27.9%MSTfulMyrtaccaeDicotyledenous tree94±6.8%MYOlaeScrophulariaccaeDicotyledenous tree97±9.1%NYRausPrimulaccaeDicotyledenous tree97±9.1%NFRausOleaccaeDicotyledenous tree84±6.8%OLEturAsteraccaeDicotyledenous tree84±6.8%PHOtenXanthorrhocaccaeDicotyledenous tree84±6.8%PHOtenXanthorrhocaccaeDicotyledenous tree84±6.8%PHOtenXanthorrhocaccaeDicotyledenous tree84±6.8%PHOtenXanthorrhocaccaeDicotyledenous tree86±7.9%PHOtenXanthorrhocaccaeDicotyledenous tree86±7.9%PHOtenPinaccaeDicotyledenous tree86±3.6%PHYtriPhyllocadcaecaeGymnosperm tree100±9.5%PTCraPitrosporaccaeDicotyledenous tree100±9.5%	Prickly Hakea (Hakea sericea Schrad. and J.C.Wendl.)	HAKser	Proteaceae	Dicotyledenous shrub	$38\pm3.3\%$	Exotic	×
KUNeriMyrtaceaeDicotyledenous tree60±9.6%LEPscoMyrtaceaeDicotyledenous tree13±1.5%LEUfasEricaceaeDicotyledenous tree13±2.1%MELramViolaceaeDicotyledenous tree13±2.1%METexcMyrtaceaeDicotyledenous tree13±2.1%METexcMyrtaceaeDicotyledenous tree135±27.9%METfulMyrtaceaeDicotyledenous tree135±27.9%MSTfulMyrtaceaeDicotyledenous tree137±5.8%MYRausPrimulaceaeDicotyledenous tree94±6.8%MYRausPrimulaceaeDicotyledenous tree97±9.1%NSIanOleaceaeDicotyledenous tree84±6.8%OLEturAsteraceaeDicotyledenous tree84±6.8%PHOtenXanthorrhoeaceaeMorocotyledenous tree84±6.8%PHOtenXanthorrhoeaceaeDicotyledenous tree84±6.8%PHOtenXanthorrhoeaceaeDicotyledenous tree84±6.8%PHOtenXanthorrhoeaceaeDicotyledenous tree86±7.9%PHOtenXanthorrhoeaceaeMonocotyledenous struth86±7.9%PHYtriPhyllocladaceaeGymnosperm tree100±9.5%PTCraPitcospecteaeDicotyledenous tree100±9.5%	Rewarewa (Knightia excelsa R.Br.)	KNIexc	Proteaceae	Dicotyledenous tree	$62\pm8.9\%$	Indigenous	×
LEPsco Myrtaccae Dicotyledenous tree LEUfas Ericaccae Dicotyledenous shrub 19±1.5% MELram Violaccae Dicotyledenous tree 73 ± 2.1% METram Violaccae Dicotyledenous tree 135 ± 27.9% METram Violaccae Dicotyledenous tree 135 ± 27.9% METram Violaccae Dicotyledenous tree 135 ± 27.9% MSTful Myrtaccae Dicotyledenous tree 137 ± 5.8% MYRaus Primulaccae Dicotyledenous tree 94 ± 6.8% MYRaus Oleaccae Dicotyledenous tree 97 ± 9.1% MYRaus Oleaccae Dicotyledenous tree 84 ± 6.8% MYRaus Oleaccae Dicotyledenous tree 84 ± 6.8% OLEtur Asteraccae Dicotyledenous tree 84 ± 6.8% PHOten Xanthorrhocaccae Dicotyledenous tree 86 ± 7.9% PHOten Xanthorrhocaccae Dicotyledenous shrub 86 ± 7.9% PHOten Xanthorrhocaccae Dicotyledenous shrub 86 ± 3.6% PHOten Xanthorrhocaccae Dicotyledenous tree 100 ± 9.5% PHOten Phylucladaccae Gymnosperm tree 100 ± 9.5% Phrad Pitrosporaccae Dicotyledenous tree	Kānuka (Kunzea ericoides (A.Rich) Joy Thomps. sensu lato. ^A)	KUNeri	Myrtaceae	Dicotyledenous tree	$60\pm9.6\%$	Indigenous	21
Interview Discriptedenous shrub 19±1.5% Interview Nothofagaceae Discriptedenous tree 13±2.1% MELram Violaceae Discriptedenous tree 13±2.1% METexc Myrtaceae Discriptedenous tree 135±27.9% METful Myrtaceae Discriptedenous tree 135±27.9% MYOlae Scrophulariaceae Discriptedenous tree 137±5.8% MYRaus Primulaceae Discriptedenous tree 94±6.8% MYRaus Primulaceae Discriptedenous tree 97±9.1% NFSlan Oleaceae Discriptedenous tree 94±6.8% OLEcur Oleaceae Discriptedenous tree 84±6.8% OLEtur Asteraceae Discriptedenous tree 84±6.8% PHOten Xanthorrhocaceae Discriptedenous tree 84±6.8% PHOten Xanthorrhocaceae Discriptedenous tree 86±7.9% PHOten Xanthorrhocaceae Discriptedenous tree 86±3.6% PhYtri Phyllocadaceae Gymnosperm tree 100±9.5% Phrad Pitrosporaceae Discriptedenous tree 100±9.5% <td>Mānuka (Leptospermum scoparium J.R.Forst. and G.Forst.)</td> <td>LEPsco</td> <td>Myrtaceae</td> <td>Dicotyledenous tree</td> <td></td> <td>Indigenous</td> <td>×</td>	Mānuka (Leptospermum scoparium J.R.Forst. and G.Forst.)	LEPsco	Myrtaceae	Dicotyledenous tree		Indigenous	×
1) LOPmen Nothofagaceae Dicotyledenous tree 73 ± 2.1% MELram Violaceae Dicotyledenous tree 133 ± 27.9% METful Myraceae Dicotyledenous tree 135 ± 27.9% METful Myraceae Dicotyledenous tree 135 ± 27.9% METful Myraceae Dicotyledenous tree 94 ± 6.8% MYRaus Primulaceae Dicotyledenous tree 97 ± 9.1% NYRaus Oleaceae Dicotyledenous tree 97 ± 9.1% OLEeur Oleaceae Dicotyledenous tree 97 ± 9.1% OLEtur Asteraceae Dicotyledenous tree 84 ± 6.8% PHOten Asteraceae Dicotyledenous tree 87 ± 10.3% PHOten Xanthorrhoeaceae Monocyledenous shrub 86 ± 7.9% PHOten Xanthorrhoeaceae Monocyledenous shrub 86 ± 3.6% PHOten Yanthorrhoeaceae Dicotyledenous tree 100 ± 9.5% PhYtri Phyllocladaceae Gymnosperm tree 100 ± 9.5% Phrad Pitrosporaceae Dicotyledenous tree 100 ± 9.5%	Mingimingi (Leucopogon fasciculatus (G.Forst.) A.Rich.)	LEUfas	Ericaceae	Dicotyledenous shrub	$19\pm1.5\%$	Indigenous	6
MELram Violaceae Dicotyledenous tree 135 ± 27.9% METful Myraccae Dicotyledenous tree 135 ± 27.9% METful Myraccae Dicotyledenous tree 135 ± 27.9% METful Myraccae Dicotyledenous tree 137 ± 5.8% MYRaus Primulaceae Dicotyledenous tree 94 ± 6.8% MYRaus Primulaceae Dicotyledenous tree 97 ± 9.1% NESlan Oleaceae Dicotyledenous tree 97 ± 9.1% OLEctur Oleaceae Dicotyledenous tree 87 ± 10.3% OLEtur Asteraceae Dicotyledenous shrub 87 ± 10.3% PHOten Xanthorrhoeaceae Monocyledenous shrub 86 ± 7.9% PHYtri Phyllocladaceae Gymnosperm tree 100 ± 9.5% PTCra Pitrosporaceae Dicotyledenous tree 100 ± 9.5%	Silver Beech (Lophozonia menziesii (Hook.f.) Heenan and Smissen)	LOPmen	Nothofagaceae	Dicotyledenous tree	$73\pm2.1\%$	Indigenous	×
METexc Myrtaceae Dicotyledenous tree 109 ± 4.2% METful Myrtaceae Dicotyledenous trae 94 ± 6.8% MYOlae Scrophulariaceae Dicotyledenous trae 94 ± 6.8% MYRaus Primulaceae Dicotyledenous tree 97 ± 9.1% NYRaus Primulaceae Dicotyledenous tree 97 ± 9.1% NESIan Oleaceae Dicotyledenous tree 97 ± 9.1% OLEcur Oleaceae Dicotyledenous tree 84 ± 6.8% OLEtra Asteraceae Dicotyledenous shrub 87 ± 10.3% PHOten Xanthorrhoeaceae Monocotyledenous shrub 86 ± 7.9% PHOten Xanthorrhoeaceae Monocotyledenous shrub 86 ± 7.9% PHOten Xanthorrhoeaceae Monocotyledenous tree 100 ± 9.5% PhYtri Phyllocladaceae Gymnosperm tree 113 ± 14.6%	Mahoe (Melicytus ramiflorus J.R.Forst. and G.Forst.)	MELram	Violaceae	Dicotyledenous tree	$135\pm27.9\%$	Indigenous	6
METfulMyrtaccaeDicotyledenous liane94±6.8%MYOlaeScrophulariaccaeDicotyledenous tree94±6.8%MYOlaeScrophulariaccaeDicotyledenous tree97±9.1%NESlanOleaccaeDicotyledenous tree97±9.1%OLEcurOleaccaeDicotyledenous tree84±6.8%OLEturAsteraccaeDicotyledenous shrub43±8.1%NHYtiAsteraccaeDicotyledenous shrub87±10.3%PHOtenXanthorrhocaccaeMonocotyledenous shrub86±7.9%PHYtriPhyllocladccaeGymnosperm tree100±9.5%PTCraPitcsporaccaeDicotyledenous tree113±14.6%	Põhutukawa (<i>Metrosideros excelsa</i> Sol. ex Gaertn.)	METexc	Myrtaceae	Dicotyledenous tree	$109\pm4.2\%$	Indigenous	14
MYOlaeScrophulariaceaeDicotyledenous tree137 ± 5.8%MYRausPrimulaceaeDicotyledenous tree97 ± 9.1%NESlanOleaceaeDicotyledenous tree97 ± 9.1%OLEcurOleaceaeDicotyledenous tree84 ± 6.8%OLEfurAsteraceaeDicotyledenous shrub43 ± 8.1%NHYtiAsteraceaeDicotyledenous shrub87 ± 10.3%PHOtenXanthorrhocaceaeMonocotyledenous shrub86 ± 7.9%PHYtriPhyllocladaceaeGymnosperm tree100 ± 9.5%PTCraPittosporaceaeDicotyledenous tree1113 ± 14.6%	Rata (<i>Metrosideros fulgens</i> Sol. ex Gaertn.)	METful	Myrtaceae	Dicotyledenous liane	$94\pm6.8\%$	Indigenous	×
MYRausPrimulaceaeDicotyledenous tree $97\pm9.1\%$ NESIanOleaceaeDicotyledenous tree $52\pm8.5\%$ NESIanOleaceaeDicotyledenous tree $52\pm8.5\%$ OLEturAsteraceaeDicotyledenous shrub $43\pm6.1\%$ NEAAsteraceaeDicotyledenous shrub $87\pm10.3\%$ PHOtenXanthorrhoeaceaeMonocotyledenous shrub $86\pm7.9\%$ PHYtriPhyllocladaceaeGymnosperm tree $100\pm9.5\%$ PTCraPittosporaceaeDicotyledenous tree $113\pm14.6\%$	Ngaio (<i>Myoporum laetum</i> G.Forst.)	MYOlae	Scrophulariaceae	Dicotyledenous tree	$137\pm5.8\%$	Indigenous	9
NESIan Oleaceae Dicotyledenous tree 52 ± 8.5% OLEeur Oleaceae Dicotyledenous tree 84 ± 6.8% OLEfur Asteraceae Dicotyledenous shrub 43 ± 8.1% NPHOten Asteraceae Dicotyledenous shrub 87 ± 10.3% PHOten Xanthorrhoeaceae Monocotyledenous perennial iridoform herb 86 ± 7.9% PHYtri Phyllocladaceae Gymnosperm tree 100 ± 9.5% PTCra Pittosporaceae Dicotyledenous tree 113 ± 14.6%	Māpou (Myrsine australis (A.Rich.) Allan)	MYRaus	Primulaceae	Dicotyledenous tree	$97\pm9.1\%$	Indigenous	2
OLEeur Oleaceae Dicotyledenous tree 84±6.8% 0 LEfur Asteraceae Dicotyledenous shrub 43±8.1% 0 LEtra Asteraceae Dicotyledenous shrub 87±10.3% PHOten Xanthorrhoeaceae Monocotyledenous perennial iridoform herb 86±7.9% PHYtri Phyllocladaceae Gymnosperm tree 100±9.5% PTCra Pittosporaceae Dicotyledenous tree 113±14.6%	Maire (Nestegis lanceolata (Hook.f.) L.A.S.Johnson)	NESlan	Oleaceae	Dicotyledenous tree	$52\pm 8.5\%$	Indigenous	×
OLEfur Asteraceae Dicotyledenous shrub 43 ± 8.1%) OLEtra Asteraceae Dicotyledenous shrub 87 ± 10.3% PHOten Xanthorrhoeaceae Monocotyledenous perennial iridoform herb 86 ± 7.9% PHYtri Phyllocladaceae Gymnosperm tree 100 ± 9.5% PITcra Pittosporaceae Dicotyledenous tree 113 ± 14.6%	European Olive (Olea europaea L.)	OLEeur	Oleaceae	Dicotyledenous tree	$84\pm6.8\%$	Exotic	×
) OLEtra Asteraceae Dicotyledenous shrub 87±10.3% PHOten Xanthorrhoeaceae Monocotyledenous perennial iridoform herb 86±7.9% PHYtri Phyllocladaceae Gymnosperm tree 86±3.6% PINrad Pinaceae Gymnosperm tree 100±9.5% PITcra Pittosporaceae Dicotyledenous tree 113±14.6%	Akepiro (Olearia furfuracea (A.Rich) Hook.f.)	OLEfur	Asteraceae	Dicotyledenous shrub	$43\pm8.1\%$	Indigenous	×
PHOten Xanthorrhoeaceae Monocotyledenous perennial iridoform herb 86 ± 7.9% PHYtri Phyllocladaceae Gymnosperm tree 86 ± 3.6% PINrad Pinaceae Gymnosperm tree 100 ± 9.5% x.A.Cunn.) PITcra Pittosporaceae Dicotyledenous tree 113 ± 14.6%	Chatham Island Akeake (Olearia traversiorum (F. Muell.) Hook.f.)	OLEtra	Asteraceae	Dicotyledenous shrub	$87\pm10.3\%$	Indigenous	9
PHYtri Phyllocladaceae Gymnosperm tree 86 ± 3.6% PINrad Pinaceae Gymnosperm tree 100 ± 9.5% x A.Cunn.) PITcra Pittosporaceae Dicotyledenous tree	Flax (<i>Phormium tenax</i> J.R.Forst. and G.Forst.)	PHOten	Xanthorrhoeaceae	Monocotyledenous perennial iridoform herb	$86\pm7.9\%$	Indigenous	×
PINradPinaceaeGymnosperm tree $100 \pm 9.5\%$ PITcraPittosporaceaeDicotyledenous tree $113 \pm 14.6\%$	Tanekaha (Phyllocladus trichomanoides D.Don)	PHYtri	Phyllocladaceae	Gymnosperm tree	$86\pm3.6\%$	Indigenous	×
PITcra Pittosporaceae Dicotyledenous tree $113 \pm 14.6\%$	Radiata Pine (<i>Pinus radiata</i> D.Don)	PINrad	Pinaceae	Gymnosperm tree	$100\pm9.5\%$	Exotic	24
	Karo (Pittosporum crassifolium Banks and Sol. ex A.Cunn.)	PITcra	Pittosporaceae	Dicotyledenous tree	$113\pm14.6\%$	Indigenous	×

Tarata (Pittosporum eugenioides A.Cunn)	PITeug	Pittosporaceae	Dicotyledenous tree	$116 \pm 3.2\%$	Indigenous	6
Kohuhu (Pittosporum tenuifoluum Sol. ex Gaertn.)	PITten	Pittosporaceae	Dicotyledenous tree	$102\pm4.4\%$	Indigenous	20
Totara (Podocarpus totara G.Benn. ex D.Don)	PODtot	Podocarpaceae	Gymnosperm tree	$96\pm15.6\%$	Indigenous	8
Kūmarahou (Pomaderris kumeraho A.Cunn.)	POMkum	Rhamnaceae	Dicotyledenous shrub	$12\pm1.1\%$	Indigenous	8
Lombardy Poplar (<i>Populus nigra</i> L.)	POPnig	Salicaceae	Dicotyledenous tree	$67\pm4.9\%$	Exotic	27
Miro (Prumnopitys ferruginea (D.Don) de Laub.)	PRUfer	Podocarpaceae	Gymnosperm tree	$96\pm10.6\%$	Indigenous	8
Five-finger (Pseudopanax arboreus (Murray) Philipson)	PSEarb	Araliaceae	Dicotyledenous tree	$192\pm9.8\%$	Indigenous	13
Bracken (Pteridium esculentum (G.Forst.) Cockayne)	PTEesc	Dennstaedtiaceae	Fern	$16\pm1.1\%$	Indigenous	8
Supplejack (Ripogonum scandens J.R.Forst. and G.Forst.)	RIPsca	Ripogonaceae	Monocotyledenous liane	$140\pm8.9\%$	Indigenous	~
Kōwhai (Sophora microphylla Aiton)	SOPmic	Fabaceae	Dicotyledenous tree	$123\pm4.1\%$	Indigenous	10
Monkey Apple (Syzygium smithii (Poir.) Nied.)	SYZsmi	Myrtaceae	Dicotyledenous tree	$82\pm 6.5\%$	Exotic	~
Gorse (Ulex europaeus L.)	ULEeur	Fabaceae	Dicotyledenous shrub		Exotic	~
Pūriri (Vitex lucens Kirk)	VITluc	Lamiaceae	Dicotyledenous tree	$155 \pm 27.6\%$	Indigenous	~
Kāmahi (Weinmannia racemosa L.f.)	WElrac	Cunoniaceae	Dicotyledenous tree	$53\pm 6.1\%$	Indigenous	~

These samples were collected before recent taxonomic revision of the K. ericoides species complex (de Lange 2014) and, as such, we refer to the previous taxonomy to identify our samples.

indigenous species that we assessed are all abundant in different areas of the country, both in native forest and as garden plants, and were chosen to span a range of taxonomic groups. The exotic species are all commonly planted (n = 7) or abundant weeds (n = 8) in NZ, and included two gymnosperms and eight dicoty-ledonous trees and shrubs. Many of these exotic species were chosen because they are known to be flammable in other locations.

One sample was taken per individual from a minimum of six individuals per species (Table 1). The sampled individuals were all healthy, not visibly water-stressed at the time of sampling, and, for heteroblastic species, possessed a mature growth-form. Wherever possible we sampled sun-exposed branches (Perez-Harguindeguy et al. 2013). Following Jaureguiberry et al. (2011) for trees, shrubs and lianas, samples consisted of 70 cm-long-terminal branches, with lianas sampled in the canopies of their host trees where they produce mature, leafy branches that are sun exposed. All fern samples consisted of a 70 cm terminal section of a single frond. A different sampling technique was employed for Flax (Phormium tenax), as per herbaceous species sampled by Jaureguiberry et al. (2011). To preserve the shoot architecture of this iridoform species, a sample consisted of a single clump cut at ground level and trimmed from the leaf tips to 70 cm in length. All samples were stored for less than one week in sealed plastic bags at 4-8°C before burning. Experimental burns were conducted primarily in spring or summer, with some evergreen species burnt at the end of winter.

Flammability measurements

To measure shoot flammability we largely followed the methods described by Jaureguiberry *et al.* (2011) and Burger and Bond (2015), who used a custom-built portable device constructed from an 85×60 cm barrel cut in half and arranged horizontally on four metal legs. Our device was built following the specifications of Jaureguiberry *et al.* (2011) and adjusted to meet NZ safety standards; see 'Device specifications' in Supplementary material for further details.

When conducting flammability tests it is important to match the ignition source to the moisture content of the material being tested (White and Zipperer 2010). Pilot burning trials showed that only the most flammable species (e.g. Eucalyptus spp.) consistently ignited on our device when burned immediately after collection, which meant that we could only measure relative differences in flammability for those few most flammable species. Thus, all samples were air-dried at room temperature for 24 h before burning to enable a wider range of species to be ignited by the blowtorch, and so allowing a representative assessment of their comparative flammability. The methodology we employed to burn our samples followed that specified by Jaureguiberry et al. (2011). The burner was turned on until the grill reached a temperature of \sim 150°C and left on for the duration of the experiment. Grill temperature was measured before each sample. Unlike Jaureguiberry et al. (2011), who attempted to maintain the grill at 150°C throughout their experiments, we burned samples with grill temperatures ranging between 100-160°C. Regressions showed no relationships between grill temperature and the three measured flammability variables or our overall flammability index (P > 0.4, $r^2 < 0.002$ in all cases).

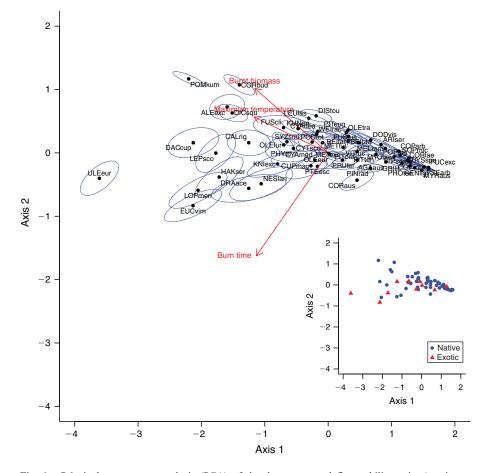
Samples were horizontally placed on the grill and preheated for two minutes, following Jaureguiberry et al. (2011). The blowtorch was then turned on for 10 s to ignite the samples. Jaureguiberry et al. (2011) determined this protocol on the basis of the literature (Stephens et al. 1994; Dimitrakopoulos and Papaioannou 2001) and their own trials. Measurements started immediately after the blowtorch was turned off. We recorded the length of time the sample burned (sustainability), the maximum temperature reached by the burning sample (combustibility) and, once burning was complete, as per Burger and Bond (2015), we visually estimated the percentage of the original biomass that had burnt (consumability). Visual estimations of burnt biomass were made by two people to minimise observer error. Samples that failed to maintain flaming ignition once the blowtorch was turned off were considered to not have ignited and given values of zero for all three variables. Frequency of ignition was recorded as a measure of ignitability, and was defined as the percentage of each species samples that had achieved ignition and burnt once the blowtorch was turned off.

Sub-samples were taken from each sample and weighed to determine their fresh mass (FM) at the time of burning. These sub-samples were oven-dried at 65°C for 48 h to determine dry mass (DM). Moisture content (MC) on a dry mass basis of the sub-samples at the time of burning was calculated using Eqn 1 (Behm *et al.* 2004).

$$MC = [(FM-DM)/DM] \times 100$$
(1)

Statistical analyses

All statistical analyses were conducted using R version 3.1.2 (R Development Core Team 2014). Using the princomp() function from the stats package, we performed a principal components analysis (PCA) to investigate flammability patterns across species using burn time, maximum temperature and burnt biomass for every sample. Because the variables were on different scales, we performed the PCA using the correlation matrix of the data. A second PCA (see Fig S3) was undertaken using the mean values per species for the three measured flammability variables, as well as the percentage of each species samples that had achieved ignition and burnt once the blowtorch was turned off (i.e. frequency of ignition). Given that all flammability traits were negatively correlated with the first axis of this second PCA (and which explained nearly 80% of the variation in the data), we used position on this axis to provide an index of flammability for the species tested; species with the lowest axis one scores had the highest values for the four flammability traits and therefore the highest overall flammability. We used this index of flammability and K-means clustering (Hartigan and Wong 1979) to divide the species into flammability categories following Fogarty (2001): high, moderate/high, moderate, low/moderate and low, with an additional 'very high' category for Gorse. We compared the flammability ranking of the 27 species common to our study and that of Fogarty (2001) via a Spearman's rank correlation. We then computed the probability of obtaining the resultant Spearman's correlation co-efficient by chance alone by randomly shuffling the ranks of the 27 species and computing the Spearman's rank correlation between the random ranking and the Fogarty (2001)


ranking 10 000 times. Finally, we investigated the relationships among the four flammability components for the species burned in this study via Pearson's product-moment correlations on all combinations of the flammability variables. Correlations were performed using the mean values per species of the three measured flammability variables and also the ignition frequency per species.

Results

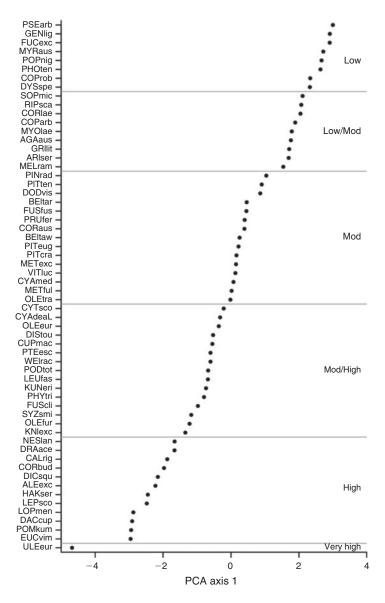
The 60 species we assessed varied widely in their flammability traits (Fig. 1). The first PCA axis explained 78% of the variation in the data and was negatively associated with all three flammability variables. The loadings of the three flammability variables were approximately equal on axis one (maximum temperature: -0.59, burn time: -0.57, burnt biomass: -0.58). The second PCA axis explained 12% of the variation and was negatively correlated with burn time (loading = -0.81) and positively correlated with maximum temperature and burnt biomass (loadings = 0.28 and 0.51). Variation on the second PCA axis was negatively related to position along axis one, as axis two variation increased with decreasing axis one scores (increasing flammability); high flammability species (low PCA axis one values) ranged from-0.83-1.17 in axis two position, whereas low flammability (high axis one values) species all scored similar values for axis two, clustering around -0.1 on this axis. Many low flammability species samples failed to ignite after 10 s with the blowtorch on, while those that did ignite only reached comparatively low values for all measured variables. See Table S1 for summary data of the measured flammability traits for each species.

With the exception of the exotic Gorse, our PCA revealed few differences in flammability between NZ indigenous and exotic species (Fig. 1). Excluding Gorse, the lower limits of PCA axis one (i.e. highest flammabilities) were similar between indigenous (-2.20) and the remaining exotic species (-2.13). This finding includes Manna Gum, a naturalised species that was selected for this study in part because it is known to burn readily in its native Australia. Compared with the lower limits of axis one, there were greater differences in the upper axis one limits (i.e. the low flammability end of the spectrum) between indigenous (1.58) and exotic (1.28) species. Nevertheless, exotic species occurred in all flammability categories (as determined by K-means clustering of the flammability index), including the lowest flammability category (Fig. 2). According to our flammability index, the most flammable species were the European shrub Gorse, the indigneous heathland shrub Kūmarahou (Pomaderris kumeraho), the indigenous trees Rimu (Dacrydium cupressinum), Silver Beech (Lophozonia menziesii) and Mānuka (Leptospermum scoparium) and the Australian shrub Prickly Hakea (Hakea sericea) (Fig. 2). We found similarities in species flammability within genera such as Beilschmiedia, Coprosma, Cyathea and Metrosideros, but considerable differences were observed within genera such as Fuscospora and, to a lesser extent, Olearia (Fig. 2).

Our experimentally derived ranking was strongly correlated with the ranking produced from expert opinion for the 27 species common to both (Spearman's $\rho = 0.638$, P < 0.001; Fig. 3). The probability of obtaining a Spearman's correlation coefficient of

Fig. 1. Principal components analysis (PCA) of the three measured flammability traits (maximum temperature, burn time and burnt biomass). Points indicate the mean scores per species; ellipses indicate the standard error of the mean. The first two ordination axes explained 78% and 12% of the variation in the data, respectively. The inset figure shows the mean species scores for the same PCA and indicates the origin of the species as either New Zealand native or exotic. See Table 1 for definitions of species codes.

0.638 or higher was 0.0003, suggesting the strong correlation between our experimentally derived ranking and that of Fogarty (2001) was extremely unlikely to result from random chance. The species differing most between our assessment and that of Fogarty (2001) were Kauri (Agathis australis), Rimu, Akeake, Rewarewa (Knightia excelsa), Silver Beech and Flax (Fig. 3). Kauri, Akeake and Flax were less flammable than suggested by expert opinion, while Rimu, Rewarewa and Silver Beech were found to be more flammable by our study. Almost half (13) of the species common to these two studies were assigned to the same flammability category in each study. Nine species differed by one category, four species differed by two categories and a single species (Silver Beech) differed by three categories. Of these five species that differed by two or more categories, Flax was assigned to a lower flammability category in our study, whereas Rimu, Rewarewa, Silver Beech and Kāmahi (Weinmannia recemosa) were assigned to higher flammability categories in our study.


Intermediate to strong positive correlations were found among species means for the four flammability components (r > 0.58, P < 0.0001 in all instances; Table 2). The strongest correlations were found when the maximum temperature (combustibility) reached by a sample was one of the variables assessed. The weakest correlations were between the percentage of samples ignited (ignitability) and both burn time (sustainability) and burnt biomass (consumability).

Moisture content of the samples ranged from 12–239% (Table 1). The species with the highest moisture contents were (in descending order): Karaka (*Corynocarpus laevigatus*), Five-finger (*Pseudopanax arboreus*), Broadleaf (*Griselinia littoralis*), Hangehange (*Geniostoma ligustrifolium*), Pūriri (*Vitex lucens*) and Kohekohe (*Dysoxylum spectabile*), with mean moisture contents ranging from 152–239% on a dry mass basis. These high moisture content species all displayed low levels of flammability. The species with the lowest moisture contents were (in ascending order): Kūmarahou, Ponga (*Cyathea dealbata*), Korokio (*Corokia buddleioides*), Bracken and Mingimingi (*Leucopogon fasciculatus*). Moisture contents for these species ranged from 12–19%.

Discussion

Flammability of New Zealand trees and shrubs

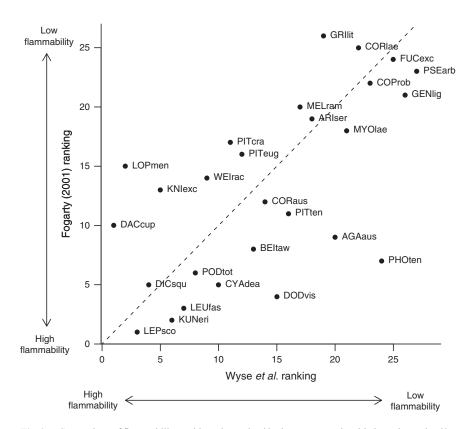

The first aim of our study was to quantify the shoot flammability of several NZ plants. Flammability levels varied across the

Fig. 2. Flammability rankings for the study species determined by the first axis of a principal components analysis (PCA). The PCA was computed using the flammability variables maximum temperature, burn time, burnt biomass and ignition frequency (and is shown in Fig. S3). The first PCA axis was negatively correlated with all measured flammability variables and explained 80% of the variation in the data. Flammability categories were determined using k-means clustering. See Table 1 for definitions of species codes.

species investigated, with some burning at high temperatures (up to 861°C) and for relatively long time periods (up to 173 s), while others consistently failed to maintain flaming ignition once the blowtorch was turned off (see Table S1). The three flammability variables measured per sample, maximum temperature, burn time and burnt biomass, were all negatively correlated with the first PCA axis. However, the spread of samples on the second PCA axis suggested that there were a range of variable combinations that defined a high flammability species. At the flammable end of the spectrum (i.e. negative values on PCA axis 1), species fell on a continuum from those with high biomass consumption and maximum temperatures,

but comparatively low burn time, to those with low biomass consumption and maximum temperatures but high burn time. The most flammable species that we assessed, Gorse, had high values for three parameters measured, while the least flammable species displayed consistently low values for all. The dichotomy in flammability types between species with high consumability (burnt biomass) and combustibility (maximum temperature) versus those with high sustainability (burn time) has been noted previously in comparisons of the flammability of litter types (a different fuel type to that burned here), albeit with a different measure of combustibility (flame height) to that used here (de Magalhães and Schwilk 2012). Ignitability, a trait recorded

Fig. 3. Comparison of flammability rankings determined in the present study with those determined by Fogarty (2001). Twenty-seven species were common between both studies. Dashed line indicates where points would lie in a perfect correlation between both ranking systems. Species above the line were found to be more flammable by the present study; species below the line were found to be more flammable by Fogarty (2001). See Table 1 for definitions of species codes.

Table 2. Pearson's correlation coefficient among the species means of the three measured flammability traits and the percentage of the samples that ignited per species. n = 60 species, P < 0.0001 in all cases

Variable	Burn time (s)	Maximum temperature (°C)	Burnt biomass (%)
Maximum temperature (°C)	0.780		
Burnt biomass (%)	0.739	0.789	
Percent ignited	0.583	0.873	0.641

only at the species level rather than per sample, was strongly correlated with the maximum temperature at which the samples burned. Correlations among the flammability components were expected, as these measures of flammability are not orthogonal (White and Zipperer 2010). Given that ignitability is the key component determining whether a sample actually burns (Martin *et al.* 1994), we expected ignitability to be the component explaining most of the variability in the other three flammability components. However, we found weak correlations between this component and both burn time and burnt biomass, while maximum temperature (combustibility) was most strongly correlated with the other three components.

The NZ indigenous species we studied were all from habitats where fire has not been a major selective pressure, being neither a frequent nor predictable cause of disturbance (Perry *et al.*) 2014). Conversely, several of the exotic species we included (e.g. Bottlebrush (*Callistemon rigidus*), Manna Gum, Prickly Hakea and Gorse) were selected because they are native to fire-prone environments and are known to burn readily. The Mutch (1970) hypothesis suggests that plants from fire-dependent communities have evolved characteristics that increase their propensity to burn, though this has since been much debated in the literature (e.g. Snyder 1984; Bond and Midgley 1995; Schwilk 2003; Bowman *et al.* 2014). Bowman *et al.* (2014) showed that fire-enhancing plant traits can exist in plant communities rarely exposed to fire, and proposed that such traits have therefore evolved independently of landscape fire as the result of other selective pressures, although some may be exaptations. Despite fire not being a selective pressure in the evolutionary history of the indigenous NZ species (with the possible exception of some

shrubs such as Mānuka and some non-woody wetland taxa: Perry et al. 2014), we found several indigenous species to be at least as flammable as exotic species from fire-prone environments, although none were as flammable as Gorse. Interestingly, the most fire-adapted indigenous species burned here, Mānuka, was not the most flammable of the indigenous species. Although our study was not designed to test their hypothesis, these findings support Bowman et al. (2014) as we demonstrate high levels of flammability in species from communities that are rarely burnt. High shoot-level flammability was also recently reported for species that occur in the fire-free forest biome in South Africa (Calitz et al. 2015). For species such as Rimu and Silver Beech, the traits causing them to have relatively high flammability have evolved without fire as a selective force and likely have been the result of other evolutionary pressures, or are ancestral characters that have been retained since the species arrived in NZ. Indeed, where fire is rare in a community, traits that enhance flammability but confer other selective benefits such as drought or herbivore tolerance may arise due to a lack of selective pressure against them. This may explain why Rimu and Silver Beech, species from comparatively wet habitats, were two of the most flammable species tested here. Future research should focus on identifying the physical traits influencing the flammability of New Zealand plant species and their evolutionary significance (Murray et al. 2013; Burger and Bond 2015).

We found indigenous early successional forest and scrub species such as Kūmarahou, Mānuka and, to a lesser extent, Akepiro (Olearia furfuracea) and Kānuka (Kunzea ericoides), to be among the most flammable species, along with the mature forest species Silver Beech and Rimu. Conversely, species found to be of the lowest flammability in this study included common lowland forest species such as Karamū (Coprosma robusta), Karaka, Kohekohe, Hangehange and Five-finger. We recommend the use of this latter group of species, along with Kōtukutuku (Fuchsia excorticat) and Hangehange, in green fire breaks. These species were placed in the low flammability categories in our study and by Fogarty (2001). Species such as Karamū and Hangehange, in particular, have broad environmental tolerances and are commonly planted throughout the country, while others such as Karaka and Kohekohe are more appropriate for areas or habitats with milder climates. Macrocarpa (Cupressus macrocarpa) and Lombardy Poplar (Populus *nigra*) are two common species planted as shelterbelts on NZ farms. Based on the relative flammability measured here we recommend the use of Lombardy Poplar in this context, as it is likely to have a lower fire risk than Macrocarpa.

Of the 10 exotic species examined in this study, Scotch Broom (*Cytisus scoparius*), Prickly Hakea and Gorse are abundant invasive weeds of farmland and early successional communities in NZ (Williams 2011). Our results suggest that the canopy foliage and shoots of Scotch Broom presents less of a fire risk than Prickly Hakea or Gorse. However, these latter two species could increase the flammability of the early successional communities that they invade, as has occurred with other woody invasions (Berry *et al.* 2011; Mandle *et al.* 2011). Perry *et al.* (2014) hypothesised that this may then slow post-fire succession in NZ as communities spend longer in flammable, early successional states. The potential combined flammability of mixtures of indigenous early successional species and these high flammability invasive species is unknown for NZ species and ecosystems, and warrants further investigation (e.g. following Mola *et al.* 2014). However, it is evident that unchecked spread of these flammable species, particularly Gorse in farmland across most of the country, should be a priority for control. In Spain, Madrigal *et al.* (2012) advocated intensive management of Gorse shrubland to prevent plants exceeding five years of age. At this stage rapid physiological and structural changes considerably increase plant flammability (Madrigal *et al.* 2012), most likely through retention of dead biomass (Dent, Lustig, Buckley and Curran unpubl. data).

Shoot-level flammability assessment in comparison to expert opinion

Vegetation flammability is a much-debated subject, both in terms of its usefulness as a concept and the most appropriate methods for its assessment (e.g. White and Zipperer 2010; Fernandes and Cruz 2012; Pausas and Moreira 2012). White and Zipperer (2010) provide a review of different quantitative methods for assessing plant flammability, evaluating the methodologies and advocating for the standardisation of flammability measures among studies. White and Zipperer (2010) also compared species' relative flammability rankings as determined by several methodologies, while Dimitrakopoulos (2001) compared expected relative flammability based on species physical and chemical properties to laboratory measures of ignitability. In their respective studies, White and Zipperer (2010) found reasonable agreement among some, but not all, of the methodologies investigated, and Dimitrakopoulos (2001) found good agreement between the expected flammability rankings and empirical results. To our knowledge, however, flammability rankings based on expert opinion have not previously been evaluated against quantitative experimental measures, so our comparison represents a novel contribution to this debate. Long et al. (2006) used expert opinion to identify a suite of species to test empirically, but did not attempt to compare the outcomes of the two approaches.

Our experimental assessments broadly agreed with the qualitative rankings of Fogarty (2001). However, there were also some notable discrepancies between the two approaches. First, our results illustrated that despite their common physiognomy different tree fern taxa vary in their flammability (in comparison to Fogarty 2001). Additional discrepancies between the two studies, such as in the rankings of Rimu, Rewarewa and Silver Beech, may result from the types of data used to generate the assessments. While a fire manager is likely to integrate observations of the flammability of a species with knowledge of the environmental conditions that species inhabits, we compared species flammability traits under common (controlled) environmental conditions in an experimental context. Fogarty's (2001) methodology likely, therefore, integrates flammability with the opportunity to burn in a given environment, whereas we have assessed flammability given the presence of an ignition source. Due to these differences, the results of our study may provide a more accurate depiction of species' relative flammability in a common environment; although caution must be applied when extrapolating from our laboratory setting to field conditions

(Pausas and Moreira 2012). In contrast, the assessments of Fogarty (2001) may better reflect the relative likelihood of species burning in their natural environments. Between these two studies we are starting to gain a robust view of the comparative flammability of many trees and shrubs occurring in the NZ landscape. However, future work involving whole branches and shrubs, and ideally large-scale experimental burns in the field that account for the structure of the live and dead fuel, are necessary to gain an understanding of NZ plant flammability across a range of scales.

Suitability of the methodology

Because they preserve much of the architecture of the plant shoots, the methods we used provide a more realistic comparison of relative canopy flammability among species than methods that use smaller plant components (Perez-Harguindeguy *et al.* 2013). Our methods can be used to provide relative indices of flammability among species at the shoot-level. However, like all laboratory methods, caution must be applied when scaling beyond the experimental setting, as the flammability of species in field conditions will be influenced not only by the characteristics of the species itself but also by its environment (White and Zipperer 2010; Fernandes and Cruz 2012). In this study we have standardised our experimental units across species as single, 70 cmlong-terminal sections. However, this may not accurately reflect the characteristics of the fuel as it is on the plant for some species.

There are two particular circumstances where methodological improvements are needed in terms of the definition of a sampling unit. The first situation that warrants improvement is where a species has sparsely placed leaves (or pinnae) along a single branch (or frond), but where in the field branches would typically overlap on the whole plant and increase bulk density and fuel continuity. When such samples burn the individual leaves may burn readily, but the flame does not carry along the sample and is quickly extinguished having burnt little of the biomass. For example, Bracken is regarded as highly flammable (McGlone et al. 2005) and we found that individual pinnae burn readily. However, only one or two pinnae would be ignited by the blowtorch and, owing to the sparse placement of pinnae along the frond, the flame would not carry along the sample. In the field, bracken fronds grow in a very dense, intertwined fashion and fire would spread easily through a plant.

The second methodological issue we identified was with species that retain dead material, particularly around their trunks. This is the case for some tree fern species and also Cabbage Tree (*Cordyline australis*). The retention of dead leaf material increases plant flammability (Bowman *et al.* 2014), and preliminary tests found dead tree fern and Cabbage Tree fronds were more flammable than the corresponding live material. For such species the flammability of the dead material will likely be a more important driver of plant flammability than that of a live shoot, yet the present method only measures this where dead material is part of a terminal shoot section. This issue may be one that is best resolved by burning entire plants or large branches.

Conclusions

We have developed the first empirical ranking of flammability across a range of indigenous and exotic New Zealand plant species. Our results indicate that invasive exotic species such as Gorse and Prickily hakea are highly flammable and therefore have the potential to increase fire risk in the communities that they invade. We also determined that many indigenous plant species - notably Rimu, Silver Beech and Kūmarahou - burn readily and were among the most flammable species evaluated in this study. We found our shoot-level flammability assessments to largely concur with a previous qualitative assessment based on expert opinion (Fogarty 2001), providing support for both methods and progressing towards a better understanding of plant flammability in New Zealand. These close correlations between rankings derived from our shoot-level experiments and those gleaned from expert opinion support Schwilk's (2015) suggestion that further measurements of canopy-held fuels are warranted and that these could be measured at the shoot scale; for instance, with the device designed by Jaureguiberry et al. (2011). Future research should examine the plant traits that give rise to the flammability patterns measured here, while larger-scale and fieldbased studies should be employed to further our understanding of links between plant flammability and fire behaviour.

The dataset used for this study is available online as Supplementary material (Table S3).

Acknowledgements

We thank the University of Auckland (UoA) and Lincoln University (LU) for funding for this research. UoA provided funding through a Faculty of Science Research Development Grant awarded to GLWP; LU provided funding via Early Career Researcher and LU Research Fund grants to TJC, Summer Scholarships to PSH, MJW and IJG, and an internship to KJLM. We also thank UoA, LU, Landcare Research Lincoln, Christchurch City Council, the Auckland Botanic Gardens and several private landholders for allowing sampling on their properties.

References

- Allan HH (1961) 'Flora of New Zealand. Volume I. Indigenous Tracheophyta Psilopsida, Lycopsida, Filicopsida, Gymnospermae, Dicotyledons.' (P.D. Hasselberg, Govt. Printer: Wellington)
- Anderson HE (1970) Forest fuel ignitibility. *Fire Technology* **6**, 312–319. doi:10.1007/BF02588932
- Anderson SAJ, Anderson WR (2009) Predicting the elevated dead fine fuel moisture content in gorse (*Ulex europaeus* L.) shrub fuels. *Canadian Journal of Forest Research* **39**, 2355–2368. doi:10.1139/X09-142
- Anderson SAJ, Anderson WR (2010) Ignition and fire spread thresholds in gorse (Ulex europaeus). International Journal of Wildland Fire 19, 589–598. doi:10.1071/WF09008
- Behm AL, Duryea ML, Long AJ, Zipperer WC (2004) Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface. *International Journal of Wildland Fire* 13, 355–365. doi:10.1071/WF03075
- Berry ZC, Wevill K, Curran TJ (2011) The invasive weed Lantana camara increases fire risk in dry rainforest by altering fuel beds. Weed Research 51, 525–533. doi:10.1111/J.1365-3180.2011.00869.X
- Bond WJ (2005) Large parts of the world are brown or black: a different view on the 'Green World' hypothesis. *Journal of Vegetation Science* **16**, 261–266.
- Bond WJ, Midgley JJ (1995) Kill thy neighbour: an individualistic argument for the evolution of flammability. *Oikos* 73, 79–85. doi:10.2307/ 3545728
- Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D'Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR,

Pyne SJ (2009) Fire in the Earth system. *Science* **324**, 481–484. doi:10.1126/SCIENCE.1163886

Bowman DMJS, French BJ, Prior LD (2014) Have plants evolved to selfimmolate? Frontiers in Plant Science 5, 590. doi:10.3389/FPLS.2014.00590

- Burger N, Bond WJ (2015) Flammability traits of Cape shrubland species with different post-fire recruitment strategies. *South African Journal of Botany*. doi:10.1016/J.SAJB.2015.05.026
- Calitz W, Potts AJ, Cowling RM (2015) Investigating species-level flammability across five biomes in the Eastern Cape, South Africa. *South African Journal of Botany*. doi:10.1016/J.SAJB.2015.07.005
- Cornwell WK, Elvira A, van Kempen L, van Logtestijn RSP, Aptroot A, Cornelissen JHC (2015) Flammability across the gymnosperm phylogeny: the importance of litter particle size. *New Phytologist* 206, 672–681. doi:10.1111/NPH.13317
- de Lange PJ (2014) A revision of the New Zealand Kunzea ericoides (Myrtaceae) complex. PhytoKeys 40, 1–185. doi:10.3897/PHYTO KEYS.40.7973
- de Magalhães RMQ, Schwilk DW (2012) Leaf traits and litter flammability: evidence for non-additive mixture effects in a temperate forest. *Journal* of Ecology **100**, 1153–1163. doi:10.1111/J.1365-2745.2012.01987.X
- Dickinson KJM, Kirkpatrick JB (1985) The flammability and energy content of some important plant species and fuel components in the forests of southeastern Tasmania. *Journal of Biogeography* 12, 121–134. doi:10.2307/2844836
- Dimitrakopoulos AP (2001) A statistical classification of Mediterranean species based on their flammability components. *International Journal of Wildland Fire* **10**, 113–118. doi:10.1071/WF01004
- Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. *Fire Technology* 37, 143–152. doi:10.1023/ A:1011641601076
- Etlinger MG, Beall FC (2004) Development of a laboratory protocol for fire performance of landscape plants. *International Journal of Wildland Fire* **13**, 479–488. doi:10.1071/WF04039
- Fernandes RM, Cruz MG (2012) Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions. *New Phytologist* **194**, 606–609. doi:10.1111/J.1469-8137.2012.04065.X
- Fogarty LG (2001) A flammability guide for some common New Zealand native tree and shrub species. Forest Research Bulletin 143, Forest and Rural Fire Scientific and Technical Series Report 6. Forest Research Institute in association with the New Zealand Fire Service Commission and National Rural Fire Authority, Rotorua, Wellington.
- Fonda RW (2001) Burning characteristics of needles from eight pine species. Forest Science 47, 390–396.
- Gill AM, Zylstra P (2005) Flammability of Australian forests. *Australian Forestry* 68, 87–93. doi:10.1080/00049158.2005.10674951
- Hartigan JA, Wong MA (1979) A K-means clustering algorithm. *Applied Statistics* **28**, 100–108. doi:10.2307/2346830
- Jaureguiberry P, Bertone G, Diaz S (2011) Device for the standard measurement of shoot flammability in the field. *Austral Ecology* **36**, 821–829. doi:10.1111/J.1442-9993.2010.02222.X
- Johnson VJ (1975) Hardwood fuel-breaks for north eastern United States. Journal of Forestry 73, 588–589.
- Kane JM, Varner JM, Hiers JK (2008) The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. *Forest Ecology and Management* 256, 2039–2045. doi:10.1016/ J.FORECO.2008.07.039
- Keeley JE, Bond WJ, Bradstock RA, Rundel PW (2012) 'Fire in Mediterranean ecosystems: ecology, evolution and management.' (Cambridge University Press: New York)
- Liodakis S, Bakirtzis D, Lois E (2002) TG and autoignition studies on forest fuels. *Journal of Thermal Analysis and Calorimetry* 69, 519–528. doi:10.1023/A:1019907706137
- Long AJ, Behm A, Zipperer WC, Hermansen A, Maranghides A, Mell W (2006) Quantifying and ranking the flammability of ornamental shrubs

in the southern United States. In '2006 Fire ecology and management conference proceedings (DVD).' (The Association for Fire Ecology/ Washington State University Extension: San Diego, CA)

- Madrigal J, Guijarro M, Hernando C, Diez C, Marino E (2011) Estimation of peak heat release rate of a forest fuel bed in outdoor laboratory conditions. *Journal of Fire Sciences* 29, 53–70. doi:10.1177/ 0734904110373890
- Madrigal J, Marino E, Guijarro M, Hernando C, Diez C (2012) Evaluation of the flammability of gorse (*Ulex europaeus* L.) managed by prescribed burning. *Annals of Forest Science* 69, 387–397. doi:10.1007/S13595-011-0165-0
- Mandle L, Bufford JL, Schmidt IB, Daehler CC (2011) Woody exotic plant invasions and fire: reciprocal impacts and consequences for native ecosystems. *Biological Invasions* 13, 1815–1827. doi:10.1007/S10530-011-0001-3
- Martin RE, Gordon DA, Gutierrez MA, Lee DS, Molina DM, Schroeder RA, Sapsis DB, Stephens SL, Chambers M (1994) Assessing the flammability of domestic and wildland vegetation. In 'Proceedings of the 12th conference on fire and forest meteorology.' pp. 130–137. (Society of American Foresters: Bethesda, Maryland)
- McGlone MS, Duncan RP, Heenan PB (2001) Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. *Journal of Biogeography* 28, 199–216. doi:10.1046/J.1365-2699.2001.00525.X
- McGlone MS, Wilmshurst JM, Leach HM (2005) An ecological and historical review of bracken (*Pteridium esculentum*) in New Zealand, and its cultural significance. *New Zealand Journal of Ecology* 29, 165–184.
- McWethy DB, Whitlock C, Wilmshurst JM, McGlone MS, Li X (2009) Rapid deforestation of South Island, New Zealand, by early Polynesian fires. *The Holocene* **19**, 883–897. doi:10.1177/0959683609336563
- McWethy DB, Wilmshurst JM, Whitlock C, Wood JR, McGlone MS (2014) A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. *PLoS One* 9, e111328. doi:10.1371/ JOURNAL.PONE.0111328
- Mola JM, Varner JM, Jules ES, Spector T (2014) Altered community flammability in Florida's Apalachicola Ravines and implications for the persistence of the endangered conifer *Torreya taxifolia*. *PLoS One* 9, e103933. doi:10.1371/JOURNAL.PONE.0103933
- Moore LB, Edgar E (1976) 'Flora of New Zealand. Volume II. Indigenous tracheophyta – monocotyledons except graminae.' (A.R. Shearer, Govt. Printer: Wellington)
- Mullan B, Porteous A, Wratt D, Holls M (2005) Changes in drought risk with climate change. Prepared for Ministry for the Environment (NZ Climate Change Office) and Ministry of Agriculture and Forestry. NIWA Client Report: WLG2005–23. (National Institute of Water and Atmospheric Research, Wellington).
- Murray BR, Hardstaff LK, Phillips ML (2013) Differences in leaf flammability, leaf traits and flammability–trait relationships between native and exotic plant species of dry sclerophyll forest. *PLoS One* 8, e79205. doi:10.1371/JOURNAL.PONE.0079205
- Mutch RW (1970) Wildfires and ecosystems a hypothesis. *Ecology* **51**, 1046–1051. doi:10.2307/1933631
- Núñez-Regueira L, Rodriguez JA, Castineiras JP (1996) Calorific values and flammability of forest species in Galicia coastal and hillside zones. *Bioresource Technology* 57, 283–289. doi:10.1016/S0960-8524(96) 00083-1
- Ogden J, Basher L, McGlone M (1998) Fire, forest regeneration and links with early human habitation: evidence from New Zealand. *Annals of Botany* 81, 687–696. doi:10.1006/ANBO.1998.0637
- Owens MK, Lin C-D, Taylor CAJ, Whisenant SG (1998) Seasonal patterns of plant flammability and monoterpenoid content in *Juniperus ashei*. *Journal of Chemical Ecology* 24, 2115–2129. doi:10.1023/ A:1020793811615

Quantitative assessment of shoot flammability

- Pausas JG, Moreira B (2012) Flammability as a biological concept. *New Phytologist* **194**, 610–613. doi:10.1111/J.1469-8137.2012.04132.X
- Pearce HG, Kerr J, Clark A, Mullan B, Ackerley D, Carey-Smith T, Yang E (2010). Improved estimates of the effect of climate change on NZ fire danger. Scion Client Report No. 18087. (Scion, Rural Fire Research Group, Christchurch).
- Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. *Australian Journal of Botany* 61, 167–234. doi:10.1071/BT12225
- Perry GLW, Wilmshurst JM, McGlone MS (2014) Ecology and long-term history of fire in New Zealand. New Zealand Journal of Ecology 38, 157–176.
- R Development Core Team (2014) 'R: A language and environment for statistical computing.' (R Foundation for Statistical Computing: Vienna)
- Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. *American Naturalist* 162, 725–733. doi:10.1086/379351
- Schwilk DW (2015) Dimensions of plant flammability. New Phytologist 206, 486–488. doi:10.1111/NPH.13372
- Snyder JR (1984) The role of fire: Mutch ado about nothing? *Oikos* **43**, 404–405. doi:10.2307/3544161

- Stephens SL, Gordon DA, Martin RE (1994) Combustibility of selected domestic vegetation subjected to desiccation. In 'Proceedings of the 12th Conference on Fire and Forest Meteorology.' pp. 565–571. (Society of American Foresters: Bethesda, Maryland)
- Webb CJ, Sykes WR, Garnock-Jones PJ (1988) 'Flora of New Zealand. Volume IV. Naturalised pteridophytes, gymnosperms, dicotyledons.' (Botany Division, D.S.I.R.: Christchurch)
- Weise DR, White RH, Beall FC, Etlinger M (2005) Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. *International Journal of Wildland Fire* 14, 321–338. doi:10.1071/WF04035
- White RH, Zipperer WC (2010) Testing and classification of individual plants for fire behaviour: plant selection for the wildland-urban interface. *International Journal of Wildland Fire* **19**, 213–227. doi:10.1071/ WF07128
- Whitlock C, Higuera PE, McWethy DB, Briles CE (2010) Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. *The Open Ecology Journal* 3, 6–23. doi:10.2174/187421300 1003020006
- Williams PA (2011) Secondary succession through non-native dicotyledonous woody plants in New Zealand. New Zealand Natural Sciences 36, 73–91.
- Wilmshurst JM, Anderson AJ, Higham TFG, Worthy TH (2008) Dating the late prehistoric dispersal of Polynesiams to New Zealand using the commensal Pacific rat. *Proceedings of the National Academy of Sciences* of the United States of America **105**, 7676–7680. doi:10.1073/PNAS. 0801507105