CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
Virtual Issues
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 57(6)

Effect of nutritional restriction and sire genotype on forelimb bone growth and carcass composition in crossbred lambs

M. A. Cake A B D, G. E. Gardner A B, R. S. Hegarty A C, M. D. Boyce A B, D. W. Pethick A B

A Australian Sheep Industry Cooperative Research Centre, Armidale, NSW 2350, Australia.
B School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
C NSW Agriculture Beef Industry Centre, University of New England, Armidale, NSW 2351, Australia.
D Corresponding author. Email: mcake@murdoch.edu.au
PDF (264 KB) $25
 Export Citation


The aim of this study was to assess the effect of low or high whole-of-life nutritional planes on bone growth, maturation, and carcass composition in lambs from sires (n = 9) with high estimated breeding values (EBVs) for post-weaning eye muscle depth (PEMD) or liveweight gain (PWWT), compared with sires of industry average for both traits. Lambs (n = 54) were killed at 8 months of age before measurement of forelimb bones, radiographic scoring, and histological measurement of growth plates, and bone ash mineral analysis. A subset of these (n = 36) had carcass composition serially assessed during growth by CAT-scan. Results reveal that the nutritional restriction imposed in this experiment caused significant restriction of skeletal growth, as reflected by shorter, thinner forelimb bones, altered limb proportions, narrowing (and in some cases permanent closure) of growth plates, and an altered bone mineral profile. CAT-scan analysis showed restriction of bone growth was similar to that of muscle growth. Progeny of high muscling (PEMD) sires showed greater muscle growth, but were possibly more susceptible to some of the skeletal effects of nutritional restriction. Greater sire EBVs for PEMD, PWWT, or fat depth were associated with narrower growth plates, suggestive of slower longitudinal bone growth and shorter adult limb length, although bone mass was not affected according to earlier CAT-scan data. Results also suggest that progeny of high PEMD or PWWT sires are earlier maturing in terms of skeletal (or at least limb) growth, although their bone mineral profile (magnesium content) was more consistent with that of physiologically less mature animals.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015