CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 43(6)

Variations in the strength of wool fibres - A review

PJ Reis

Australian Journal of Agricultural Research 43(6) 1337 - 1351
Published: 1992


This review outlines the factors that may influence the strength of wool fibres and the associated changes in structure and protein composition that have been observed in weakened fibres. The strength of a wool staple is dependent on the intrinsic strength of the fibres that it contains and the total cross-sectional area of fibre being tested. The minimum fibre diameter and the rate of change of diameter along a staple are important determinants of strength. Different sheep kept under similar conditions show a large range of staple strengths. Estimates of heritability for staple strength are sufficiently high (0.17 to 0.49 in Merinos; 0.20 to 0.58 in Romneys) to prompt the establishment of selection programmes in both breeds. A variety of physiological and environmental factors influence the strength of wool fibres. Nutrient supply exerts a major influence via effects on fibre diameter. In addition, there are specific effects of some amino acids (methionine and lysine), trace elements (copper and zinc) and vitamins (folic acid). Seasonal effects are important in breeds which exhibit a large annual rhythm of wool growth, e.g. Romneys, but not in Merinos. Pregnancy and lactation influence fibre strength through competition for essential nutrients but hormonal factors may also be involved. Fibre strength may also be influenced by stress involving excessive secretion of glucocorticoids and by various parasites and diseases which can influence nutrient supply and cause stress. No clear association has been established between the strength of wool fibres and the proportions of the constituent proteins. The content of high-tyrosine proteins in the matrix of weak fibres is frequently, but not invariably, reduced. Likewise, fibre strength has been associated with the proportions of components of the high-sulfur proteins in some studies, but not in others. Thus in Romneys, but not Merinos, tender (weak) wool contained a higher proportion of orthocortex than sound wool, and hence contained less ultra-high-sulfur proteins. Weak fibres produced by specific nutritional treatments in adult sheep and lambs show a loss of cuticle scale pattern and malformed or degraded fibres. Keywords: wool fibre strength; staple strength; protein composition amino acids

Full text doi:10.1071/AR9921337

© CSIRO 1992

blank image
Subscriber Login

PDF (886 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014