CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern hemisphere botanical ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 51(6)

Effects of increasing salinity on freshwater ecosystems in Australia

D. L Nielsen, M. A. Brock, G. N. Rees and D. S. Baldwin

Australian Journal of Botany 51(6) 655 - 665
Published: 01 December 2003


Salt is a natural component of the Australian landscape to which a number of biota inhabiting rivers and wetlands are adapted. Under natural flow conditions periods of low flow have resulted in the concentration of salts in wetlands and riverine pools. The organisms of these systems survive these salinities by tolerance or avoidance. Freshwater ecosystems in Australia are now becoming increasingly threatened by salinity because of rising saline groundwater and modification of the water regime reducing the frequency of high-flow (flushing) events, resulting in an accumulation of salt. Available data suggest that aquatic biota will be adversely affected as salinity exceeds 1000 mg L–1 (1500 EC) but there is limited information on how increasing salinity will affect the various life stages of the biota. Salinisation can lead to changes in the physical environment that will affect ecosystem processes. However, we know little about how salinity interacts with the way nutrients and carbon are processed within an ecosystem. This paper updates the knowledge base on how salinity affects the physical and biotic components of aquatic ecosystems and explores the needs for information on how structure and function of aquatic ecosystems change with increasing salinity.

Full text doi:10.1071/BT02115

© CSIRO 2003

blank image
Subscriber Login

PDF (312 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016