CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern hemisphere botanical ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 53(5)

A technique to estimate the pre-fire depth of burial of Grevillea seeds by using seedlings after fire

Tony D. Auld A B, Andrew J. Denham A

A Biodiversity Conservation Science, Department of Environment and Conservation (NSW), PO Box 1967, Hurstville, NSW 2220, Australia.
B Corresponding author. Email: tony.auld@environment.nsw.gov.au
PDF (279 KB) $25
 Export Citation


In a glasshouse experiment, we used the shrub Grevillea speciosa to examine the reliability of estimating the depth of seed burial based on the distance from the soil surface to the junction of the swollen hypocotyl with the radicle. We then examined the applicability of the technique in the field by using post-fire seedling emergence. We found that the mean length of the swollen hypocotyl in seedlings was a good predictor of the depth of seed burial (R2 = 0.97). Most variation occurred for seeds buried near the surface at 2-cm depth, where the swollen hypocotyl overestimated the depth of seed burial by about 1 cm. There was a decline in the ability of seeds to successfully emerge from soil depths below 2 cm, with seedlings of G. speciosa able to emerge from soil depths up to 8 cm in the glasshouse. This corresponds with the estimated maximum emergence depth based on seed mass. In the field, seedlings were estimated to have emerged from depths of 1–7 cm after an intense wildfire. There was an approximately normal distribution of seedling emergence depths; however, the mode of this distribution varied among locations. The technique gave comparable results to a similar technique developed for Acacia spp., allowing consideration of a greater range of species and post-fire locations. Use of the technique has the potential to provide insights into the impacts of fires below ground, including the nature of post-fire germination, residual soil seed banks, the depth-related action of fire-induced germination cues and small-scale spatial variation.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016