CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 54(2)

Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species

R. H. Froend A B, P. L. Drake A

A Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Dve, Joondalup, WA 6027, Australia.
B Corresponding author. Email: r.froend@ecu.edu.au
PDF (132 KB) $25
 Export Citation


The consideration of phreatophyte response to changes in water availability is important in identifying ecological water requirements in water-resource planning. Although much is known about water-source partitioning and intra- and interspecific variability in groundwater use by Banksia woodland species, little is known about the response of these species to groundwater draw-down. This paper describes a preliminary study into the use of xylem cavitation vulnerability as a measure of species response to reduced water availability. A response function and critical range in percentage loss of conductance is identified for four Banksia woodland overstorey species. Similarity in the vulnerability curves of B. attenuata R.Br. and B. menziesii R.Br. at low tensions supports the notion that they occupy a similar ecohydrological niche, as defined by their broad distributions relative to depth to groundwater. B. ilicifolia R.Br., however, as an obligate phreatophyte, has a range restricted to environments of higher water availability and shallower depth to groundwater and this is reflected in greater vulnerability to cavitation (relative to other Banksia) at lower tensions. The wetland tree Melaleuca preissiana Schauer generally expressed a greater vulnerability at any given xylem water potential (Ψx). This paper identifies the range in Ψx within which there is an elevated risk of tree mortality, and represents a first step towards quantifying the critical thresholds in the response of Banksia woodland species to reduced water availability.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015