CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 55(4)

Phytomass and phenology of three alpine snowpatch species across a natural snowmelt gradient

Susanna E. Venn A, John W. Morgan A B

A Research Centre for Applied Alpine Ecology, Department of Botany, La Trobe University, Bundoora, Vic. 3086, Australia.
B Corresponding author. Email: J.Morgan@latrobe.edu.au
 
PDF (169 KB) $25
 Export Citation
 Print
  


Abstract

Alpine snowpatch vegetation in Australia is restricted to high mountain areas and occurs in locations where winter snow persists longest into the summer. The timing of annual snowmelt is considered an important determinant of vegetation patterns in alpine areas because it affects the length of the growing season for plant species at landscape scales. There are few studies in Australia that have examined the effects of the date of snowmelt on the performance of plant species at small spatial scales. The phytomass and phenology of three common snowpatch species (Celmisia pugioniformis, Luzula acutifolia, Poa fawcettiae) was examined during one growing season across a natural snowmelt gradient to examine their response to time of snow release. Peak phytomass was significantly higher in early than late-melting zones for L. acutifolia and marginally higher there for C. pugioniformis. P. fawcettiae, however, produced higher mean peak phytomass in late-melting zones where soil was initially wetter in the growing season. Flower buds of L. acutifolia were evident as the snow melted, and flowering occurred at the same time in all areas of the snowpatch. The number of days from the date of snowmelt to the date of the first observed flower bud in C. pugioniformis and P. fawcettiae was 22–25 days shorter in late-melting areas than in early melting areas. For both of these species, flowering and subsequent seed set occurred simultaneously across the snowpatch regardless of the date of the initial snowmelt, suggesting that photoperiod controls flowering in these species. Our study suggests that the predicted declines in snow cover in Australia in coming decades may affect the phytomass of species that are currently constrained by late-lying snow. This, in turn, may affect their long-term patterns of distribution. If plants respond to photoperiod for flowering, as seems to be important here for C. pugioniformis and P. fawcettiae, it is unlikely that the periods following earlier than usual snowmelt will be fully utilised by these species. Any attempts at predicting or modelling future alpine plant distribution on the basis of warming scenarios may therefore need to account for photoperiod constraints on flowering as well changes in phytomass production.

   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014