CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 44(3)

Anatomical Adaptive Strategies to Flooding and Rhizosphere Oxidation in Mangrove Seedlings

T Youssef and P Saenger

Australian Journal of Botany 44(3) 297 - 313
Published: 1996


Limited information exists on the relation between the capacity of mangrove seedlings to oxidise the rhizosphere and their differential waterlogging tolerance. Laboratory experiments were conducted to estimate radial oxygen loss (ROL) by the entire root, the area of oxidising sites (AOS) on the root surface, root porosity (POR), and the internal diffusive resistance in the ground tissue of seedlings of six mangrove species that show a differential response to flooding. Radial oxygen loss was extremely low in all viviparous seedlings (0.7-1.5 μmol O2 per cm2AOS per day). Differential tolerance of species coincided with the degree of porosity (14.8-45.7%) and the ability of seedlings to develop barriers to oxygen leakage on the root surface. The percentage area of lacunae in the ground tissue of seedlings of the four viviparous species revealed a constriction of the air flow path at the hypocotyl junction. These findings suggest that: (i) the differential tolerance to waterlogging in mangrove seedlings is not simply based on their ability to oxidise the rhizosphere; (ii) the high diffusive resistance in the hypocotyl junction is likely to affect root aeration when the plant's access to air is limited by partial or total submergence; and (iii) waterlogging tolerance is probably a function of the strategy by which roots conserve oxygen to maintain aerobic metabolism for longer periods during submergence. Implications of these findings in seedlings are discussed in relation to other anatomical and morphological adaptations to waterlogging in mature mangroves.

Full text doi:10.1071/BT9960297

© CSIRO 1996

blank image
Subscriber Login

PDF (1.1 MB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014