CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
New Editor-in-Chief
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


Article << Previous     |     Next >>   Contents Vol 57(4)

EDF2: A Density Functional for Predicting Molecular Vibrational Frequencies

Ching Yeh Lin, Michael W. George and Peter M. W. Gill

Australian Journal of Chemistry 57(4) 365 - 370
Published: 02 April 2004


The majority of calculations of molecular vibrational spectra are based on the harmonic approximation but are compared (usually after empirical scaling) with experimental anharmonic frequencies. Any agreement that is observed in such cases must be attributable to fortuitous cancellation of errors and it would certainly be preferable to develop a more rigorous computational approach. In this paper, we introduce a new density functional model (EDF2) that is explicitly designed to yield accurate harmonic frequencies, and we present numerical results for a wide variety of molecules whose experimental harmonic frequencies are known. The EDF2 model is found to be significantly more accurate than other DFT models and competitive with the computationally expensive CCSD(T) method.

Keywords: computational chemistry— density functional theory— vibrational frequencies

Full text doi:10.1071/CH03263

© CSIRO 2004

blank image
Subscriber Login

PDF (185 KB) $25
 Export Citation

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015