CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


Article << Previous     |     Next >>   Contents Vol 60(10)

Electrospinning of Nanofibres: Towards New Techniques, Functions, and Applications

Roland Dersch A, Martin Graeser A, Andreas Greiner A, Joachim H. Wendorff A B

A Hans-Meerwein-Strasse, Department of Chemistry and Center of Material Science, Philipps-University, 35032 Marburg, Germany.
B Corresponding author. Email: wendorff@staff.uni-marburg.de
PDF (953 KB) $25
 Export Citation


Nanofibres, core–shell nanofibres, as well as hollow nanofibres and nanotubes based on polymers, serve as a platform for a broad range of applications as filters, textiles, in photonics, sensors, catalysis, or in medicine and pharmacy. Such nanoobjects become available by techniques such as the well-known electrospinning and the more recently developed co-electrospinning of nanofibres. Electrospinning takes place in the latter case by two or more concentrically arranged dies that yield core–shell fibres or fibres with droplet-like inclusions arranged along the centre of the fibres, where the inclusions are composed of polymers, low-molar-mass synthetic functional units, or molecules of biological origins such as proteins. Furthermore, template methods have been developed using electrospun nanofibres or a porous substrate, which yield core–shell fibres of complex architectures, with or without gradient structures or hollow nanofibres and nanotubes. These techniques are not restricted to polymers of synthetic and natural origin, but are able – based on precursor substances – to deliver nanofibres and nanotubes also composed of metals, glasses, and ceramics. Furthermore, these preparation techniques allow the direct introduction into these nanostructures of specific functional compounds such as semiconductor or catalytic nanoparticles and chromophores, in addition to enzymes, proteins, microorganisms, etc. during the preparation process in a very gentle way. Of particular interest are such nanostructures in medicine and pharmacy, for instance, as scaffolds for tissue engineering or as drug-delivery systems for tumour therapy.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015