CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


Article << Previous     |     Next >>   Contents Vol 60(6)

RAFT Chemistry and Huisgen 1,3-Dipolar Cycloaddition: A Route to Block Copolymers of Vinyl Acetate and 6-O-Methacryloyl Mannose?

S. R. Simon Ting A, Anthony M. Granville A, Damien Quémener A B, Thomas P. Davis A, Martina H. Stenzel A, Christopher Barner-Kowollik A C

A Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
B Current address: Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, ENSIC, 1 rue Grandville, BP 20451, 54 001 Nancy Cedex, France.
C Corresponding author. Email: camd@unsw.edu.au
PDF (307 KB) $25
 Export Citation


The present communication explores a novel avenue to glycopolymer-block-poly(vinyl acetate) polymers by a combination of reversible addition fragmentation chain transfer (RAFT) chemistry and Huisgen 1,3-dipolar cycloaddition (i.e., so-called ‘click’ chemistry) under mild reaction conditions. Such block copolymers are—because of the strongly disparate reactivity of the two monomers—otherwise not obtainable. Poly(vinyl acetate) that has an azide end group (Mn 6800 g mol–1, PDI 1.15) was treated with poly(6-O-methacryloyl mannose) (Mn 7600 g mol–1, PDI 1.11) in the presence of 1,8-diaza[5,4,0]bicycloundec-7-ene and copper(i) iodide. The resulting poly(vinyl acetate)-block-poly(6-O-methacryloyl mannose) had a number-average molecular weight of 15 400 g mol–1 and a PDI of 1.48, which indicates that while the cycloaddition had occurred the resulting polymer distribution featured a considerable width. The resulting slightly amphiphilic block copolymer was subsequently investigated with regard to its self-assembly in aqueous solution. Dynamic light scattering studies indicated a hydrodynamic diameter of close to 200 nm. Transmission electron microscopy studies indicate the formation of rods as well as spheres with transitions between these two phases. However, the segregation between core and shell in the spheres is not pronounced; such behaviour is expected for weakly amphiphilic block copolymers.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016