CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 63(3)

On the Superhydrophobic Properties of Crystallized Stearic Acid*

Kyle R. Joseph A, Chiara Neto A B

A School of Chemistry, The University of Sydney, NSW 2006, Australia.
B Corresponding author. Email: c.neto@chem.usyd.edu.au
 
PDF (482 KB) $25
 Export Citation
 Print
  


Abstract

A surface coating formed by stearic acid (SA) crystals was prepared by repeatedly dipping a silicon substrate into a SA solution and drying it in air. Scanning electron microscopy imaging revealed that the surface roughness of the coating increases with each dip-and-dry cycle. The coating appears as a carpet of hydrophobic ‘blades’, and is superhydrophobic (after 20 dipping cycles advancing contact angle ~160°), even after immersion in water for up to 2 h. This simple method could be applied to large areas, making this an interesting alternative to high-tech surface modification techniques.




* This paper is based on work presented at the Australian Colloid and Interface Symposium, Adelaide, February 2009.
   
Subscriber Login
Username:
Password:  



    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016