CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(3)

Oxyhalogen–Sulfur Chemistry: Oxidation of a Thiourea Dimer, Formamidine Disulfide, by Chlorine Dioxide

Bice S. Martincigh A , Morgen Mhike B , Kayode Morakinyo B , Risikat Ajibola Adigun B and Reuben H. Simoyi A B C

A School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, Republic of South Africa.
B Department of Chemistry, Portland State University, Portland, OR 97207-0751, USA.
C Corresponding author. Email: rsimoyi@pdx.edu

Australian Journal of Chemistry 66(3) 362-369 http://dx.doi.org/10.1071/CH12181
Submitted: 5 April 2012  Accepted: 21 November 2012   Published: 11 February 2013


 
PDF (791 KB) $25
 Export Citation
 Print
  
Abstract

The oxidation of formamidine disulfide, FDS, the dimer of thiourea, by aqueous chlorine dioxide has been studied in highly acidic and mildly acidic media. FDS is one of the possible oxidation intermediates formed in the oxidation of thiourea by oxyhalogens to urea and sulfate. The reaction is exceedingly slow, giving urea and sulfate with a stoichiometric ratio of 5 : 14 FDS to chlorine dioxide after an incubation period of up to 72 h and only in highly acidic media which discourages the disproportionation of chlorine dioxide to the oxidatively inert chlorate. Mass spectrometric data suggest that the oxidative pathway proceeds predominantly through the sulfinic acid, proceeding next to the products sulfate and urea, while by-passing the sulfonic acid. Transient formation of the unstable sulfenic acid was also not observed.





References

[1]  M. Mrakavova, M. Melichercik, A. Olexova, L. Treindl, Collect. Czech. Chem. Commun. 2003, 68, 23.
         | CrossRef | CAS |

[2]  B. Neumann, S. C. Muller, M. J. B. Hauser, O. Steinbock, R. Simoyi, N. S. Dalal, Abstr. Pap. Am. Chem. Soc. 1995, 209, 234. .

[3]  M. Kaholek, L. Treindl, React. Kinet. Catal. Lett. 1998, 63, 297.
         | CrossRef | CAS |

[4]  L. Kolar-Anic, G. Schmitz, J. Chem. Soc., Faraday Trans. 1992, 88, 2343.
         | CrossRef | CAS |

[5]  R. Cervellati, K. Honer, S. D. Furrow, C. Neddens, S. Costa, Helv. Chim. Acta 2001, 84, 3533.
         | CrossRef | CAS |

[6]  K. R. Kim, D. J. Lee, K. J. Shin, J. Chem. Phys. 2002, 117, 2710.
         | CrossRef | CAS |

[7]  P. V. N. Lalitha, R. Ramaswamy, Collect. Czech. Chem. Commun. 1992, 57, 2235.
         | CrossRef | CAS |

[8]  L. P. Tikhonova, S. V. Rosokha, E. A. Bakai, Kinet. Catal. 1997, 38, 225.
         | CAS |

[9]  V. Petrov, S. K. Scott, K. Showalter, Philos. Trans. Roy. Soc. A 1994, 347, 631.
         | CrossRef | CAS |

[10]  C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1993, 97, 11569.
         | CrossRef | CAS |

[11]  I. R. Epstein, K. Kustin, P. Dekepper, M. Orban, Sci. Am. 1983, 248, 112.
         | CrossRef | CAS |

[12]  C. J. Doona, S. I. Doumbouya, J. Phys. Chem. 1994, 98, 513.
         | CrossRef | CAS |

[13]  C. J. Doona, R. Blittersdorf, F. W. Schneider, J. Phys. Chem. 1993, 97, 7258.
         | CrossRef | CAS |

[14]  S. I. Doumbouya, A. F. Munster, C. J. Doona, F. W. Schneider, J. Phys. Chem. 1993, 97, 1025.
         | CrossRef | CAS |

[15]  C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1994, 98, 4012.
         | CrossRef | CAS |

[16]  C. R. Chinake, R. H. Simoyi, J. Chem. Soc., Faraday Trans. 1997, 93, 1345.
         | CrossRef | CAS |

[17]  M. Alamgir, I. R. Epstein, Int. J. Chem. Kinet. 1985, 17, 429.
         | CrossRef | CAS |

[18]  R. M. Noyes, J. Am. Chem. Soc. 1980, 102, 4644.
         | CrossRef | CAS |

[19]  G. Rabai, M. Orban, J. Phys. Chem. 1993, 97, 5935.
         | CrossRef | CAS |

[20]  G. Peintler, I. Nagypal, I. R. Epstein, J. Phys. Chem. 1990, 94, 2954.
         | CrossRef | CAS |

[21]  T. R. Chigwada, E. Chikwana, R. H. Simoyi, J. Phys. Chem. A 2005, 109, 1081.
         | CrossRef | CAS |

[22]  T. C. Bruice, A. B. Sayigh, J. Am. Chem. Soc. 1959, 81, 3416.
         | CrossRef | CAS |

[23]  T. C. Bruice, R. T. Markiw, J. Am. Chem. Soc. 1957, 79, 3150.
         | CrossRef | CAS |

[24]  M. A. Salem, C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1996, 100, 9377.
         | CrossRef | CAS |

[25]  S. V. Makarov, C. Mundoma, J. H. Penn, S. A. Svarovsky, R. H. Simoyi, J. Phys. Chem. A 1998, 102, 6786.
         | CrossRef | CAS |

[26]  S. A. Svarovsky, R. H. Simoyi, S. V. Makarov, J. Chem. Soc. Dalton Trans. 2000, 511.
         | CAS |

[27]  G. Rabai, R. T. Wang, K. Kustin, Int. J. Chem. Kinet. 1993, 25, 53.
         | CrossRef | CAS |

[28]  G. Gordon, J. Am. Water Works Assoc. 2001, 93, 163.
         | CAS |

[29]  O. Olagunju, P. D. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
         | CrossRef | CAS |

[30]  L. Wang, D. W. Margerum, Inorg. Chem. 2002, 41, 6099.
         | CrossRef | CAS |

[31]  J. F. Ojo, J. L. Petersen, A. Otoikhian, R. H. Simoyi, Can. J. Chem. 2006, 84, 825.
         | CrossRef | CAS |

[32]  J. L. Petersen, A. A. Otoikhian, M. K. Morakinyo, R. H. Simoyi, Can. J. Chem. 2010, 88, 1247.
         | CrossRef | CAS |

[33]  S. V. Makarov, C. Mundoma, J. H. Penn, J. L. Petersen, S. A. Svarovsky, R. H. Simoyi, Inorg. Chim. Acta 1999, 286, 149.
         | CrossRef | CAS |

[34]  O. Olagunju, P. A. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
         | CrossRef | CAS |

[35]  O. Olagunju, P. A. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
         | CrossRef | CAS |

[36]  T. R. Chigwada, R. H. Simoyi, J. Phys. Chem. A 2005, 109, 1094.
         | CrossRef | CAS |

[37]  S. Carballal, B. Alvarez, L. Turell, H. Botti, B. A. Freeman, R. Radi, Amino Acids 2007, 32, 543.
         | CrossRef | CAS |

[38]  S. A. Koksharov, G. V. Chistyakova, O. N. Murav’ev, S. V. Makarov, Russ. J. Appl. Chem. 1999, 72, 1225.

[39]  S. V. Makarov, Y. V. Polenov, A. N. Aleksandrova, V. V. Budanov, Izv. Vuz. Khim. Kh. Tekh. 1983, 26, 1231.
         | CAS |

[40]  S. V. Makarov, C. Mundoma, S. A. Svarovsky, X. Shi, P. M. Gannett, R. H. Simoyi, Arch. Biochem. Biophys. 1999, 367, 289.
         | CrossRef | CAS |

[41]  S. V. Makarov, E. V. Kudrik, R. van Eldik, E. V. Naidenko, J. Chem. Soc. Dalton Trans. 2002, 4074.
         | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014