CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(5)

Effects of Ni Particle Size on Hydrogen Storage of Ni-Doped High Surface Area Activated Carbon

Lufeng Yang A , Chunlin Xie A , Chaofan Hu A , Mingtao Zheng B , Haibo Wang A , Jianghu Cui A , Yong Xiao B , Bingfu Lei B , Yingliang Liu B D and Lixian Sun C D

A Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632, China.
B College of Science, South China Agricultural University, Guangzhou 510642, China.
C Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
D Corresponding authors. Email: tliuyl@163.com; lxsun@dicp.ac.cn

Australian Journal of Chemistry 66(5) 548-554 http://dx.doi.org/10.1071/CH12460
Submitted: 7 October 2012  Accepted: 20 December 2012   Published: 16 January 2013


 
PDF (963 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

A type of activated carbon that is further chemically activated to obtain a high surface area (~3322 m2 g–1) (hsAC), is loaded with nickel nanoparticles by a direct hydrothermal method, and tested for hydrogen storage. The chemical composition, crystal structure, and microstructure of hsAC with or without Ni loading are characterised in addition to the nitrogen absorbance isotherms. Hydrogen storage studies showed that metal doping has no effect on the cryogenic storage, and the maximum room temperature (RT) storage capacity through spillover on the Ni-doped hsAC materials achieved 0.79 wt-% at 30 Pa with enhancement factors of 2.93. The smaller catalyst size was a critical factor that determined the enhancement of RT storage capacity of the materials. The Ni catalyst size was controlled by the doped Ni content. Tuning the Ni catalyst size together with an optimum carbon spillover receptor should play an effective role in further enhancement by the spillover effect.





References

[1]  I. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 2010, 35, 5133.
         | CrossRef | CAS |

[2]  L. Schlapbach, A. Züttel, Nature 2001, 414, 353.
         | CrossRef | CAS |

[3]  (a) U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608.
         | CrossRef | CAS |
      (b) R. Bardhan, A. M. Ruminski, A. Brand, J. J. Urban, Energ. Environ. Sci. 2011, 4, 4882.
         | CrossRef |
      (c) H. Reardon, J. M. Hanlon, R. W. Hughes, A. Godula-Jopek, T. K. Mandal, D. H. Gregory, Energ. Environ. Sci. 2012, 5, 5951.
         | CrossRef |
      (d) B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 2007, 32, 1121.
         | CrossRef |

[4]  (a) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
         | CrossRef | CAS |
      (b) L. Wang, R. T. Yang, Energ. Environ. Sci. 2008, 1, 268.
         | CrossRef |
      (c) H. Wang, Q. Gao, J. Hu, Z. Chen, Carbon 2009, 47, 2259.
         | CrossRef |

[5]  (a) P. Kowalczyk, R. Hołyst, M. Terrones, H. Terrones, Phys. Chem. Chem. Phys. 2007, 9, 1786.
         | CrossRef | CAS |
      (b) R. Ströbel, J. Garche, P. Moseley, L. Jörissen, G. Wolf, J. Power Sources 2006, 159, 781.
         | CrossRef |

[6]  (a) L. Wang, R. T. Yang, J. Phys. Chem. C 2008, 112, 12486.
         | CrossRef | CAS |
      (b) D. Saha, S. Deng, Langmuir 2009, 25, 12550.
         | CrossRef |
      (c) V. Jiménez, A. Ramírez-Lucas, P. Sánchez, J. L. Valverde, A. Romero, Int. J. Hydrogen Energy 2012, 37, 4144.
         | CrossRef |

[7]  (a) Z. Wang, R. T. Yang, J. Phys. Chem. C 2010, 114, 5956.
         | CrossRef | CAS |
      (b) L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793.
         | CrossRef |

[8]  Z. Yang, Y. Xia, R. Mokaya, J. Am. Chem. Soc. 2007, 129, 1673.
         | CrossRef | CAS |

[9]  H. Wang, Q. Gao, J. Hu, J. Am. Chem. Soc. 2009, 131, 7016.
         | CrossRef | CAS |

[10]  (a) Y. Yamamoto, N. Nawa, S. Nishimoto, Y. Kameshima, M. Matsuda, M. Miyake, Int. J. Hydrogen Energy 2011, 36, 5739.
         | CrossRef | CAS |
      (b) K. Y. Lin, W. T. Tsai, T. J. Yang, J. Power Sources 2011, 196, 3389.
         | CrossRef |
      (c) S. Giraudet, Z. Zhu, Carbon 2011, 49, 398.
         | CrossRef |

[11]  C. S. Tsao, Y. R. Tzeng, M. S. Yu, C. Y. Wang, H. H. Tseng, T. Y. Chung, H.-C. Wu, T. Yamamoto, K. Kaneko, S.-H. Chen, J. Phys. Chem. Lett. 2010, 1, 1060.
         | CrossRef | CAS |

[12]  (a) J. Skowroński, P. Krawczyk, Solid State Ion. 2010, 181, 653.
         | CrossRef |
      (b) J. Zhou, J. He, T. Wang, X. Ding, D. Wang, Z. Di, J. Porous Mater. 2012, 19, 53.
         | CrossRef |

[13]  C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, F. Schüth, Chem. Mater. 2005, 17, 355.
         | CrossRef | CAS |

[14]  (a) M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M. Bettahar, Catal. Commun. 2005, 6, 777.
         | CrossRef |
      (b) R. Wojcieszak, M. Zieliński, S. Monteverdi, M. Bettahar, J. Colloid Interface Sci. 2006, 299, 238.
         | CrossRef |

[15]  C. Adams, H. Benesi, R. Curtis, R. Meisenheimer, J. Catal. 1962, 1, 336.
         | CrossRef | CAS |

[16]  M. Sevilla, R. Foulston, R. Mokaya, Energ. Environ. Sci. 2010, 3, 223.
         | CrossRef | CAS |

[17]  (a) M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M. Bettahar, Int. J. Hydrogen Energy 2007, 32, 1024.
         | CrossRef |
      (b) L. Zubizarreta, J. Menéndez, J. Pis, A. Arenillas, Int. J. Hydrogen Energy 2009, 34, 3070.
         | CrossRef |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014