CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(3)

Convenient Ambient Temperature Generation of Sulfonyl Radicals

Kerry Gilmore A , Brian Gold A , Ronald J. Clark A and Igor V. Alabugin A B

A Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
B Corresponding author. Email: alabugin@chem.fsu.edu

Australian Journal of Chemistry 66(3) 336-340 http://dx.doi.org/10.1071/CH12499
Submitted: 7 November 2012  Accepted: 12 December 2012   Published: 16 January 2013


 
PDF (476 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Presented herein is a novel method for the efficient, ambient temperature generation of sulfonyl radicals from aryl and alkyl sulfonylbromides upon autoxidation of triethylborane (Et3B). The resultant radicals were regioselectively trapped via addition to terminal alkynes, generating a secondary vinyl radical that selectively abstracts a Br atom from RSO2Br, yielding the (E)-bromo vinylsulfones. Sensitivity towards Lewis basic groups was observed, presumably due to the disruptive coordination to Et3B before atom-transfer.





References

[1]     (a) For general discussion of synthetic utility of radical reactions, see: D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions 1996 (VCH: Weinheim).
      (b) A. Gansauer, H. Bluhm, Chem. Rev. 2000, 100, 2771.
         | CrossRef |
         (c) Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001 (Wiley-VCH: Weinheim).
      (d) M. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263.
         | CrossRef |

[2]  (a) Selected examples of radical cascades for the preparation of conjugated carbon-rich materials: P. Byers, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 9609.
         | CrossRef | CAS |
      (b) I. V. Alabugin, K. Gilmore, S. Patil, S. M. Manoharan, S. V. Kovalenko, R. J. Clark, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 11535.
         | CrossRef |

[3]     (a) C. Chatgilialoglu, M. P. Bertrand, C. Ferreri, in S-Centered Radicals (Ed. Z. B. Alfassi) 1999, p. 311 (John Wiley & Sons, Inc.: New York, NY).
      (b) C. Chatgilialoglu, O. Mozziconacci, M. Tamba, K. Bobrowski, G. Kciuk, M. P. Bertrand, S. Gastaldi, V. I. Timokhin, J. Phys. Chem. A 2012, 116, 7623.
         | CrossRef |

[4]  M. P. Bertrand, Org. Prep. Proced. Int. 1994, 26, 257.
         | CrossRef | CAS |

[5]  (a) I. De Riggi, J. M. Surzur, M. P. Bertrand, A. Archavlis, R. Faure, Tetrahedron 1990, 46, 5285.
         | CrossRef | CAS |
      (b) T. Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem. 2011, 9, 3151.
         | CrossRef |
      (c) S. Caddick, D. Hamza, S. N. Wadman, Tetrahedron Lett. 1999, 40, 7285.
         | CrossRef |

[6]  I. V. Alabugin, V. I. Timokhin, J. N. Abrams, M. Manoharan, R. Abrams, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 10984.
         | CrossRef | CAS |

[7]  (a) The regioselectivity of the ring closure was intriguing due to the fact that the activation barriers of the competing 4-exo/5-endo-dig closures are within 1–2 kcal mol–1: I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 9534.
         | CrossRef | CAS |
      (b) Similar σ-vinylexo radical yielded mostly 4-exo-dig products: S.-I. Fujiwara, Y. Shimizu, Y. Imahori, M. Toyofuku, T. Shin-ike, N. Kambe, Tetrahedron Lett. 2009, 50, 3628.
         | CrossRef |

[8]  (a) The regioselectivity of the competing 4-exo/5-endo-dig closures is finely balanced: Anionic closures: K. Gilmore, M. Manoharan, J. I.-C. Wu, P. V. R. Schleyer, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 10584.
         | CrossRef | CAS |
         (b) Radical closures: K. Gilmore, I. V. Alabugin, in Unusual Cyclizations: Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 693–728 (John Wiley & Sons Ltd: Chichester).
      (c) C. Chatgilialoglu, C. Ferreri, M. Guerra, G. Froudakis, T. Gimisis, J. Am. Chem. Soc. 2002, 124, 10765.
         | CrossRef |

[9]  M. Tamba, K. Dajka, C. Ferreri, K.-D. Asmus, C. Chatgilialoglu, J. Am. Chem. Soc. 2007, 129, 8716.
         | CrossRef | CAS |

[10]  (a) Ru catalyst: L. Quebatte, K. Thommes, K. Severin, J. Am. Chem. Soc. 2006, 128, 7440.
         | CrossRef | CAS |
      (b) Cu catalyst: J. M. Muñoz-Molina, T. R. Belderrain, P. J. Pérez, Inorg. Chem. 2010, 49, 642.
         | CrossRef |

[11]  Y. Amiel, J. Org. Chem. 1971, 36, 3697.
         | CrossRef | CAS |

[12]  (a) Sulfonyl cyanides: R. G. Pews, T. E. Evans, Chem. Commun. 1971, 1397.
         | CAS |
      (b) J.-M. Fang, M.-Y. Chen, Tetrahedron Lett. 1987, 28, 2853.
         | CrossRef |
      (c) J.-M. Fang, M.-Y. Chen, M.-C. Cheng, G.-H. Lee, S.-M. Peng, J. Chem. Research (S) 1989, 272.
      (d) Selenosulfonates: T. G. Back, S. Collins, Tetrahedron Lett. 1980, 21, 2213.
         | CrossRef |
      (e) R. A. Gancarz, J. L. Kice, J. Org. Chem. 1981, 46, 4899.
         | CrossRef |
      (f) R. A. Gancarz, R. A. Kice, Tetrahedron Lett. 1980, 21, 4155.
         | CrossRef |
      (g) T. G. Back, S. Collins, J. Org. Chem. 1981, 46, 3249.
         | CrossRef |

[13]  (a) X. Liu, X. Duan, Z. Pan, Y. Han, Y. Liang, Synlett 2005, 11, 1752.
      (b) For general Cu-catalysed ATRA reactions requiring reductants, see W. T. Eckenhoff, S. T. Garrity, T. Pinauer, Eur. J. Inorg. Chem. 2008, 563.
         | CrossRef |
      (c) W. T. Eckenhoff, T. Pinauer, Catal. Rev. 2010, 52, 1.
         | CrossRef |

[14]  (a) Y. Amiel, Tetrahedron Lett. 1971, 12, 661.
         | CrossRef |
      (b) Y. Amiel, J. Org. Chem. 1971, 36, 3691.
         | CrossRef |
      (c) Iron-catalysed: X. Zeng, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 954.
         | CrossRef |

[15]  I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 12583.
         | CrossRef | CAS |

[16]  (a) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1966, 298.
         | CAS |
      (b) P. G. Allies, P. B. Brindley, J. Chem. Soc. B 1969, 1126.
         | CrossRef |
      (c) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1969, 699.
      (d) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1969, 91, 3942.
         | CrossRef |
      (e) R. Rensch, H. Friebolin, Chem. Ber. 1977, 110, 2189.
         | CrossRef |
      (f) For a review on the topic see: C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415.
         | CrossRef |

[17]  (a) K. Nozaki, K. Oshima, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 2547.
         | CrossRef | CAS |
      (b) K. Nozaki, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1987, 60, 3465.
         | CrossRef |
      (c) K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron 1989, 45, 923.
         | CrossRef |
      (d) J. Marco-Contelles, Synth. Commun. 1997, 27, 3163.
         | CrossRef |

[18]  (a) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2356.
         | CrossRef | CAS |
      (b) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2348.
         | CrossRef |

[19]  Y. Ichinose, K. Wakamatsu, K. Nozaki, J.-L. Birbaum, K. Oshima, K. Utimoto, Chem. Lett. 1987, 16, 1647.
         | CrossRef |

[20]  (a) Y. Ichinose, K. Nozaki, K. Wakamatsu, K. Oshima, K. Utimoto, Tetrahedron Lett. 1987, 28, 3709.
         | CrossRef | CAS |
      (b) S. Tanaka, T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshjima, Org. Lett. 2000, 2, 1911.
         | CrossRef |
      (c) M. Taniguchi, K. Oshjima, K. Utimoto, Chem. Lett. 1993, 22, 1751.
         | CrossRef |

[21]  (a) G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84, 1633.
         | CrossRef | CAS |
      (b) A. Kapat, A. Konig, F. Montermini, P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890.
         | CrossRef |
      (c) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774.
         | CrossRef |
      (d) G. Lapointe, K. Schenk, P. Renaud, Chem. – Eur. J. 2011, 17, 3207.
         | CrossRef |
      (e) M. Luthy, V. Darmency, P. Renaud, Eur. J. Org. Chem. 2011, 547.
         | CrossRef |
      (f) K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511.
         | CrossRef |
      (g) S. Cren, P. Schar, P. Renaud, K. Schenk, J. Org. Chem. 2009, 74, 2942.
         | CrossRef |
      (h) N. Mantrand, P. Renaud, Tetrahedron 2008, 64, 11860.
         | CrossRef |
      (i) A.-P. Schaffner, F. Montermini, D. Pozzi, V. Darmency, E. M. Scanlan, P. Renaud, Adv. Synth. Catal. 2008, 350, 1163.
         | CrossRef |
      (j) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985.
         | CrossRef |
      (k) L. Chabaud, Y. Landais, P. Renaud, F. Robert, F. Castet, M. Lucarini, K. Schenk, Chem. – Eur. J. 2008, 14, 2744.
         | CrossRef |

[22]  (a) A. G. Davies, B. P. Roberts, Acc. Chem. Res. 1972, 5, 387.
         | CrossRef | CAS |
      (b) A. G. Davies, B. P. Roberts, B. R. Sanderson, J. Chem. Soc., Perkin Trans. 2 1973, 626.
         | CrossRef |

[23]  (a) Y. Amiel, J. Org. Chem. 1974, 39, 3867.
         | CrossRef | CAS |
      (b) These compounds also receive increasing attention as radical polymerisation initiators: C. Grigoras, V. Percec, J. Polym. Sci. A 2005, 43, 319.
         | CrossRef |

[24]  (a) S. Caddick, C. L. Sering, S. N. Wadman, Chem. Commun. 1997, 171.
         | CrossRef | CAS |
      (b) Cyclisations of bis-allenes: S.-K. Kang, Y.-H. Ha, D.-H. Kim, Y. Lim, J. Jung, Chem. Commun. 2001, 14, 1306.
         | CrossRef |

[25]  M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).

[26]  The singly occupied orbital can serve as both the electron donor and acceptor. According to NBO analysis, the donor character dominates as follows from the relative energies of n→σ*C-S (17.8 and 9.0 kcal mol–1 for α and β spins, respectively) and σC-S →n (<0.5 and 6.6) interactions (for the adduct of tosyl radical and 1-hexyne). The vinyl radical of the phenylacetylene additions displayed an unusual Lewis structure (hypervalent carbon) which precluded the analysis of hyperconjugative interactions.

[27]  For a more general discussion of hyperconjugative effects in chemistry, see: I. V. Alabugin, K. Gilmore, P. Peterson, WIREs Comput. Mol. Sci. 2011, 1, 109.
         | CrossRef | CAS |

[28]  G. W. Kabalka, H. C. Brown, A. Suzuki, S. Honma, A. Arase, M. Itoh, J. Am. Chem. Soc. 1970, 92, 710.
         | CrossRef | CAS |

[29]  1H NMR spectra match literature data. B. Gaspar, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 5758.
         | CrossRef | CAS |

[30]  Et3B/O2-induced thioyl radical addition to alkenes has also been reported, see: H. Rahaman, M. Ueda, O. Miyata, T. Naito, Org. Lett. 2009, 11, 2651.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014