CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop & Pasture Science   
Crop & Pasture Science
Journal Banner
  Plant Sciences, Sustainable Farming Systems & Food Quality
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...


red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 60(8)

Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance

Mahabubur Mollah A D, Rob Norton B, Jeff Huzzey C

A Department of Primary Industries, 110 Natimuk Road, Private Bag 260, Horsham, Vic. 3402, Australia.
B The University of Melbourne, 110 Natimuk Road, Private Bag 260, Horsham, Vic. 3402, Australia.
C Land Technology Pty Ltd, 445 Smiths Road, Laharum, Vic. 3401, Australia.
D Corresponding author. Email: Mahabubur.Mollah@dpi.vic.gov.au
 
PDF (648 KB) $25
 Export Citation
 Print
  


Abstract

The AGFACE project commenced in June 2007 at Horsham (36°45′07″S, 142°06′52″E; 127 m elevation), Victoria, Australia. Its aim is to quantify the interactive effects of elevated atmospheric carbon dioxide concentration (e[CO2]), nitrogen, temperature (accomplished by early and late sowing times), and soil moisture on the growth, yield, and water use of wheat (Triticum aestivum L.) under Australian conditions. The main engineering goal of the project was to maintain an even temporal and spatial distribution of carbon dioxide (CO2) at 550 μmol/mol within AGFACE rings containing the experimental treatments. Monitoring showed that e[CO2] at the ring-centres was maintained at or above 90% of the target (495 μmol/mol) between 93 and 98% of the operating time across the 8 rings and within ±10% of the target (495–605 μmol/mol) between 86 and 94% of the time. The carbon dioxide concentration ([CO2]) measured inside the rings declined non-linearly with increasing distance downwind of the CO2 source and differed by 3–13% in concentration between the two canopy heights in each ring, but was not affected by wind speed or small variations in [CO2] at the ring-centres. The median values for model-predicted concentrations within the inner 11-m-diameter portion of the rings (>80% of the ring area) varied between 524 and 871 μmol/mol but remained close to target near the centres. The design criteria adopted from existing pure CO2 fumigating FACE systems and new ideas incorporated in the AGFACE system provided a performance similar to its equivalent systems. This provides confidence in the results that will be generated from experiments using the AGFACE system.

Keywords: FACE, elevated CO2, climate change, wheat, Australia.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014