CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Animal Production Science   
Animal Production Science
Journal Banner
  Food, Fibre and Pharmaceuticals from Animals
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Reviews
Sample Issue
For Authors
General Information
Notes for Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 46(11)

Forecasting the risk of crown rot between successive wheat crops

D. Backhouse

Centre for Sustainable Farming Systems, School of Environmental Sciences and Natural Resources Management, University of New England, Armidale, NSW 2351, Australia. Email: dbackhou@une.edu.au
 
PDF (139 KB) $25
 Export Citation
 Print
  


Abstract

Published data from long-term trials at Moree, New South Wales (1986–1996), and Billa Billa, Queensland (1986–1993), were analysed to determine the factors that influence the incidence of crown rot, caused by Fusarium pseudograminearum, in successive stubble-retained, no-till wheat crops and to examine the feasibility of developing a forecasting system for the disease. Polyetic progress of the epidemics could be described by a form of the logistic growth model with a carrying capacity (K) about 5% higher than the maximum recorded incidence at each site. Infection rate between seasons was positively correlated with yield and in-crop rainfall in the previous season, both of which were indicators of biomass. Infection rate was negatively correlated with rainfall parameters during the summer fallows, which were indicators of conditions favouring residue decomposition. In-crop rainfall, stored soil moisture and temperature parameters were not significantly correlated with infection rates. Multiple regressions based on incidence in the previous season, summer rainfall and either yield or in-crop rainfall in the previous season accounted for 65–81% of the variation in disease incidence at Moree and 86% of the variation in incidence at Billa Billa. Simplified parameters for use in on-farm forecasting systems were explored. The most useful of these was the square root of the product of incidence and either yield or in-crop rainfall, which gave sufficiently accurate predictions at each site to estimate the qualitative risk of crown rot in the following crop. This could be used to decide whether management options such as resistant varieties, rotations or burning were required.

Keywords: Fusarium graminearum Group 1, Gibberella coronicola.


   
Subscriber Login
Username:
Password:  



    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014