CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Animal Production Science   
Animal Production Science
Journal Banner
  Food, Fibre and Pharmaceuticals from Animals
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Reviews
Sample Issue
For Authors
General Information
Notes for Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 47(5)

Comparing irrigated biodynamic and conventionally managed dairy farms. 1. Soil and pasture properties

L. L. Burkitt A, D. R. Small B, J. W. McDonald C, W. J. Wales D E, M. L. Jenkin D

A Tasmanian Institute of Agricultural Research, University of Tasmania, PO Box 3523, Burnie, Tas. 7320, Australia.
B Environmental & Agricultural Consulting Pty Ltd, 68 Saunders Street, Kyabram, Vic. 3620, Australia.
C Veterinary & Nutrition Consultant, 82 Monds Avenue, Benalla, Vic. 3672, Australia.
D Primary Industries Research Victoria (PIRVic), 120 Cooma Road, Kyabram, Vic. 3620, Australia.
E Corresponding author. Email: bill.wales@dpi.vic.gov.au
 
PDF (102 KB) $25
 Export Citation
 Print
  


Abstract

Ten paired irrigated dairy farms under biodynamic (BD) and conventional (CV) management were compared over a 4-year period (1991–94). The paired farms were located in the irrigation districts of northern Victoria and southern New South Wales and were matched for soil type, climate, cattle breed and farm area. Farms had been practising BD principles for an average of 16 years before the commencement of the study and had not received phosphorus (P) fertiliser for an average of 17 years. The effects of farm management on soil chemical and biological properties and the nutritive properties and botanical composition of pasture were examined at varying sampling times during the study.

Soil Olsen extractable P concentrations were consistently 2–3 times higher under CV management at various sampling depths (mean = 22 mg/kg, 0–10 cm), and were generally marginal under BD management in the surface 10 cm (mean = 8.5 mg/kg). Low soil extractable P concentrations were also reflected in consistently lower mean pasture P concentrations under BD management (0.25 compared with 0.35% on CV farms). Lower soil and pasture P concentrations under BD management were the result of a large negative P balance across BD farms (–17 kg P/ha.year). A mean negative P balance under BD management was a result of low P imports (2 kg P/ha.year) in comparison with large quantities of P (19 kg P/ha.year) effectively lost from the farming system through animal products, estimated losses in water runoff and slowly reversible soil P reactions. These results suggest that greater P imports are required to ensure the future sustainability of BD dairy pasture farming systems. There were few differences in soil biological properties, with earthworm weights significantly higher under CV management, but no difference in soil organic carbon, humus concentration, the weight of the organic mat or microbial biomass, between the two management systems.

   
Subscriber Login
Username:
Password:  



    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014