CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Animal Production Science   
Animal Production Science
Journal Banner
  Food, Fibre and Pharmaceuticals from Animals
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Reviews
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 48(3)

The PythiumFusarium root disease complex – an emerging constraint to irrigated maize in southern New South Wales

P. R. Harvey A C, R. A. Warren A, S. Wakelin B

A CSIRO Entomology, PMB 2, Glen Osmond, SA 5064, Australia.
B CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia.
C Corresponding author. Email: paul.harvey@csiro.au
 
PDF (134 KB) $25
 Export Citation
 Print
  


Abstract

A pathogen-selective fungicide trial was established at a site with a history of continuous maize cultivation with stubble retention to assess the impacts of Pythium, Fusarium and Rhizoctonia root diseases on maize productivity. High soilborne populations of Pythium and Fusarium were detected at sowing, with no significant differences in their distributions across the site. Significant increases in Fusarium and Pythium isolates were recovered from maize rhizosphere soils after the first 12 weeks of crop growth. While no isolates of phytopathogenic Rhizoctonia were recovered from soil or maize roots, 63 and 100% of roots examined were colonised by Pythium and Fusarium spp., respectively. Fungicides were, therefore, ineffective in suppressing rhizosphere fungal populations and inhibiting root infection and disease development. As a result, there were no significant increases in crop establishment, early crop growth (biomass) or grain yields with any of the pathogen-selective treatments. DNA sequencing identified six Pythium and five Fusarium spp. from infected maize roots (internal transcribed spacer 5.8s rDNA) and rhizosphere soils (rDNA and translation elongation factor-1α). These species have previously been reported as saprophytes on crop residues and as components of a root-disease complex contributing to seedling damping-off and root and stem rots of maize. Growth responses of rotation crops grown in natural and sterilised continuous maize soil indicated that soilborne root pathogens significantly reduced biomass production of maize and wheat, but not Adzuki bean and canola. Fungal isolation frequencies from these crops implied host-mediated selection of Pythium but not Fusarium spp., the former showing a preference for and greater pathogenicity towards maize and wheat.

   
Subscriber Login
Username:
Password:  



    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016