CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Animal Production Science   
Animal Production Science
Journal Banner
  Food, Fibre and Pharmaceuticals from Animals
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Notes for Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube


Article << Previous     |     Next >>   Contents Vol 34(3)

Nodulation studies on legumes exotic to Australia: symbiotic relationships between Chamaecytisus palmensis (tagasaste) and Lotus spp

RR Gault, A Pilka, DM Hebb and J Brockwell

Australian Journal of Experimental Agriculture 34(3) 385 - 394
Published: 1994


Strains of rhizobia were isolated from soil around the roots of tagasaste (Chamaecytisus palmensis) growing at 15 widely separated locations in south-eastem Australia. A further collection of strains of both Rhizobium loti and Bradyrhizobium sp. (Lotus) was assembled from 18 legumes including Lotus and other species symbiotically related to Lotus. The strains were used to inoculate tagasaste and 4 species of Lotus in experiments conducted under bacteriologically controlled conditions in a temperature-controlled glasshouse. Tagasaste formed nodules and fixed N2 with all of its homologous rhizobia but there was a wide range of effectiveness among the 15 strains. Tagasaste also formed nodules with each of the 18 strains from other species but fixed N2 with only 10. Four species of Lotus were inoculated with 3 tagasaste strains. One strain nodulated each species and fixed N2 with L. conimhricensis and L. corniculatus but not with L. parviflorus or L. pedunculatus. A second tagasaste strain formed nodules with all 4 Lotus spp. but did not fix N2, while the third nodulated only L. pedunculatus but did not fix N2. A pattern analysis based on the nodulating ability of the host plants in association with 21 strains showed that tagasaste and L. corniculatus formed 1 symbiotic group, and the other 3 Lotus species formed a third group. The pattern analysis procedure based on nodulating capacity of 21 rhizobial strains in association with the 5 host species indicated substantial symbiotic diversity within the collection, with the strains comprising 8 different symbiotic groups. No strain was highly effective on both tagasaste and any of the 4 species of Lotus. Data were insufficient to classify the root-nodule bacteria of tagasaste as either Rhizobium loti or Bradyrhizobium sp. (Lotus).

Full text doi:10.1071/EA9940385

© CSIRO 1994

blank image >
PDF (696 KB) $25
 Export Citation

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014