CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Exploration Geophysics   
Exploration Geophysics
http://www.aseg.org.au
  The Journal of the Australian Society of Exploration Geophysicists
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Committee
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with CP
blank image
facebook twitter youtube

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Preview
blank image
Preview, the Magazine of the Australian Society of Exploration Geophysicists, is also available online.

red arrow ASEG Extended Abstracts
blank image
ASEG Extended Abstracts, drawn from the ASEG´s conferencces, is also available online.

 

Article << Previous     |     Next >>   Contents Vol 38(3)

The contribution of magnetite to the induced polarization response of the Centenary orebody*

Karen Pittard 1 2, Barry Bourne 1

1 Barrick Gold of Australia, 2 Mill St, Perth, WA 6000, Australia.
2 Email: kpittard@barrick.com.au
 
PDF (2.7 MB) $25
 Export Citation
 Print
  


Abstract

The Centenary gold deposit is a concealed ore body located 110 km north of Leonora, Western Australia. The orebody is associated with sulphides and is hosted in the magnetic portion of the Mount Pickering Dolerite. Due to its sulphidic nature, both gravity and induced polarisation (IP) were trialled soon after discovery.

The gravity survey showed major structures and delineated the host magnetic dolerite, and a trial dipole–dipole IP and resistivity survey detected a significant chargeability anomaly over Centenary. Interestingly, both forward and inverse models showed an IP anomaly that was broader than, and displaced from, mineralisation. Down hole IP and resistivity surveys also showed an elevated chargeability response shallower and broader than the intersected mineralised zone. Pyrite is the main sulphide associated with Centenary and is spatially related to gold mineralisation. These data therefore suggested that pyrite was not the sole contributor to the chargeability response of Centenary.

Petrophysical results, integrated with examination of thin sections, found that the five samples giving the highest chargeability response contained at least 5% pyrite and 5% magnetite, and at least 15% magnetite and pyrite combined. Samples with comparable amounts of pyrite, but less magnetite, gave a lower chargeability response. This supports a hypothesis that rocks containing both magnetite and pyrite at Centenary can generate a larger IP response than rocks containing pyrite or magnetite alone.

Keywords: Centenary, greenstone, geophysics, induced polarisation, magnetics, gravity, pyrite, magnetite.



* *Presented at the Australian Earth Sciences Convention, June 2006, Melbourne.
   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014